Первая страница / Теория / Сжатие данных /

JPEG, JPEG2000, JPEG-LS. Сжатие изображений с потерями и без

Голосование: 21, 4

Введение

На сегодняшний день качественная, высокопроизводительная компьютерная графика является одной из важнейших задач разработчиков программного обеспечения. Огромные средства вкладываются в разработку эффективного оборудования для различных графических и мультимедийных систем. В последние годы появились компьютеры способные в реальном времени воспроизводить сложнейшие визуальные образы, давно превзошедшие по качеству телевизионные или полиграфические. Это способствовало появлению огромного количества программ, использующих эти возможности: компьютерные игры, видео-приложения, 3d-анимация и т.д. Но у всех этих программ есть одна отличительная особенность: графические данные, с которыми они работают, занимают очень много места.

В то время уже были достаточно распространены среди пользователей персональных компьютеров такие графические форматы, как BMP, PCX, GIF. Но даже уменьшение объема графической информации в два раза оказалось недостаточным для современных графических систем. В связи с этим с конца 80х годов две крупнейшие в мире организации стандартов CCITT и ISO объединили свои усилия для выработки единого стандарта формата графического файла, сжатого с потерями. Новый стандарт получил свое название JPEG по имени группы разработчиков Joint Photographic Experts Group.

Сделаем небольшое замечание: JPEG прежде всего является методом сжатия. Его нельзя рассматривать в качестве полноценного стандарта представления изображений. Поэтому в нем не задаются такие специфические параметры изображения, как геометрический размер пикселя, пространство цветов или чередование битовых строк. То же можно сказать и о JPEG2000, и о JPEG-LS — это методы сжатия, а не полноценные стандарты.

1. JPEG

Рассмотрим алгоритм работы простейшего кодера JPEG с потерями. Весь процесс состоит из следующих основных этапов:

Шаги работы кодера JPEG
Рис. 1. Шаги работы кодера JPEG
  • Препроцессинг — этап, на котором выполняется предварительная обработка изображения, приводящая его к удобному для последующего кодирования виду.
  • Дискретное косинусное преобразование (ДКП) используется кодером JPEG для преобразования изображения от его пространственного представления к спектральному.
  • Округление (квантование) — этап, на котором происходит основная потеря информации за счет округления несущественных, высокочастотных ДКП-коэффициентов.
  • Сжатие — кодирование полученных данных стандартными методами (кодирование повторов, арифметическое кодирование и т.д.)

1.1. Препроцессинг

Если изображение содержит более одной компоненты, то они кодируются по отдельности. В связи с этим, на данном этапе выполняется перевод графического изображения из его компонентного представления в цветоразностное, яркостное представление (ICT — Irreversible Color Transform). В связи с тем, что человеческий глаз более восприимчив к яркостному сигналу, чем к цветовому, это преобразование позволит добиться больших результатов сжатия при меньших визуальных потерях. Далее будет рассматриваться кодирование одной отдельной компоненты.

Пример работы ICT преобразования

Рис. 2. Пример работы ICT преобразования.

Матрица ICT преобразования

Рис. 3. Матрица ICT преобразования.

Помимо ICT преобразования, на данном этапе исходное изображение разбивается на малые квадратные блоки и выполняется сдвиг основания значений цвета относительно нуля для корректного пространственного представления изображения: [0,2p - 1] -> [-2p-1, 2p-1 - 1]. Эти шаги важны для эффективной работы кодера на следующем этапе.

1.2. ДКП

Являясь ключевым шагом алгоритма сжатия, дискретное косинусное преобразование (далее ДКП) представляет собой разновидность преобразования Фурье и, также как и последнее, имеет обратное преобразование (ОДКП). Если рассматривать изображение как совокупность пространственных волн, где оси X и Y соответствуют ширине и высоте картинки, а по оси Z откладываются значения цвета соответствующих пикселей, то можно перейти от пространственного представления картинки к ее спектральному представлению и обратно. ДКП преобразует матрицу пикселей размера N x N в матрицу частотных коэффициентов соответствующего размера.

Формулы ДКП
Рис. 4. Формулы ДКП.

В получаемой матрице низкочастотные компоненты расположены ближе к левому верхнему углу, а более высокочастотные смещаются вправо вниз. В связи с тем, что основная часть графических образов на экране состоит из низкочастотной информации, используя полученную матрицу можно дифференцированно отбрасывать наименее важную информацию с минимальными визуальными потерями. Таким образом ДКП позволяет выбрать информацию, которую можно безболезненно отбросить, не внося серьезных искажений в картинку. Трудно представить, как можно было бы выполнить эту задачу на исходном изображении.

Из формул (рис. 4) видно, что вычисление одного элемента результирующей матрицы требует O(N2) времени, поэтому почти невозможно выполнить преобразование всей матрицы целиком. Группа разработчиков JPEG предложила оптимальный вариант решения этой проблемы: разбивать исходную матрицу на квадраты стандартного размера 8x8 и выполнять преобразование каждого из них. Использование блоков большего размера позволит улучшить качество сжатия, но не до бесконечности, так как слишком мала вероятность того, что сильно отдаленные точки похожи друг на друга.

Стоит отметить, что в ходе вычислений используется только 32 заранее вычисленных значения косинусов, что позволяет заметно увеличить скорость работы преобразования. Это уже, несомненно, приводит к частичной потери информации, но ее объемы относительно несущественны.

Небольшого увеличения производительности можно добиться, если при вычислениях использовать только целочисленную арифметику, что, правда, является актуальным только для старых вычислительных машин, так как в современных компьютерах стоимость операций над числами с плавающей запятой не отличается от операций над целыми. Также использование целочисленной арифметике негативно сказывается на качестве сжимаемого изображения, что делает этот метод неприемлемым для современных компьютеров. Так как ДКП является разновидностью преобразования Фурье, то все методы увеличения производительности преобразования Фурье могут быть использованы и здесь.

1.3. Округление

Следующим этапом, на котором и происходит основная потеря информации, является округление или квантование. Как видно, ДКП не выполняет какого-либо сжатия или кодирования. Основной его задачей является преобразование исходного изображения к виду, удобному для последующих операций над ним.

Округлением называется процесс уменьшения объема информации, необходимого для хранения матрицы ДКП, с частичной потерей точности. По стандарту JPEG для этого используется матрица округления (МО). Каждому элементу исходной матрицы ДКП соответствует элемент МО. Результирующая матрица получается делением исходной матрица на МО. При этом низкочастотным значениям в матрице ДКП соответствуют меньшие коэффициенты МО, что позволяет оставлять более значимую, низкочастотную информацию и отбрасывать менее важную высокочастотную. В связи с тем, что низкочастотные компоненты сосредоточены в левом верхнем углу матрицы ДКП, значения МО растут слева направо и сверху вниз.


3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

Пример матрицы округления с фактором качества равным 2.

Результаты округления и качества восстановленного изображения напрямую зависят от выбранной матрицы округления. Стандарт JPEG позволяет использовать любую МО, однако ISO в ходе долгих экспериментальных тестирований разработала набор матриц, позволяющих добиться оптимальных результатов.

1.4. Сжатие

Последний этап работы алгоритма кодирования JPEG — это сжатие. После обработки матрицы ДКП с помощью МО, в результирующей матрице появляется большое количество нулей, особенно в высокочастотной области (правый нижний угол).

Первым шагом значение в левом верхнем углу результирующей матрицы заменяется на относительное. Так как соседние блоки изображения похожи друг на друга, то кодирование очередного элемента (0,0) через разницу с предыдущим будет более эффективным. Вторым шагом является непосредственно применение алгоритма кодирования повторов (LZW), для обработки большого количества подряд идущих нулей. Экспериментальные тестирования показали, что наилучших результатов можно добиться, если обходить матрицу зигзагом, как показано на рисунке ниже.

Порядок обхода матрицы зигзагом

Рис. 5. Порядок обхода матрицы зигзагом.

Наконец, на третьем и заключительном шаге полученный результат сжимается, как обычные данные с помощью алгоритма Хаффмана или арифметического кодирования в зависимости от реализации. Этот этап носит название «кодирование энтропии» (в терминологии JPEG).

1.5. Декодирование

Так как ДКП является преобразованием Фурье, к нему существует обратное дискретное косинусное преобразование (ОДКП). Алгоритм декодирования повторяет алгоритм кодирования в обратном порядке.

2. JPEG2000

Изначально новый стандарт разрабатывался как база для будущего стандарта сжатия без потерь JPEG-LS, но позднее был отвергнут в связи с появлением более эффективных алгоритмов. В связи с развитием технологий стандарт JPEG постепенно терял свою актуальность. Разработчики JPEG2000 надеялись создать стандарт, который исправил бы многие ошибки уже существующих стандартов. Среди их задач были:

  • Устранение неэффективного сжатия в области низких частот. Существующие алгоритмы неплохо справлялись со сжатием среднечастотных и высокочастотных областей, но в области низких частот они показывали плохие результаты.
  • Сжатие с потерями и без потерь. На момент разработки не существовало стандарта, позволяющего сжимать с потерями и без потерь в едином сжимающем потоке.
  • Обработка больших изображений. Существующие алгоритмы не позволяли эффективно сжимать изображения размером более 64Kx64K без разбиения на тайлы.
  • Единая структура алгоритма сжатия. Текущая реализация JPEG поддерживала 44 модификации, большая часть которых была специфичной для некоторых приложений и не поддерживалась большей частью декодеров.
  • Помехоустойчивость. Во время разработки JPEG сетевые технологии не были еще достаточно развиты, и проектировщики JPEG не задумывались над помехоустойчивостью при передаче изображений по небезопасным каналам и возможностью восстановления изображения в случае его повреждения в результате передачи.
  • Компьютерно-сгенерированные изображения. Исходные алгоритмы неплохо работали на цифровых фотографиях и изображениях, полученных с помощью цифровой фотокамеры или сканера, но неэффективно обрабатывали изображения, созданные на компьютере, например, с помощью графических редакторов.
  • Сложные документы. JPEG показывал очень плохие результаты при обработке сложных двумерных изображений (в частности изображений текста).

На следующей диаграмме представлены основные шаги работы кодера JPEG2000.

Шаги работы кодера JPEG2000

Рис. 6. Шаги работы кодера JPEG2000

2.1. Препроцессинг

Препроцессинг

Рис. 7. Препроцессинг

В отличие от JPEG кодер JPEG2000 не требует разбиения изображения на малые квадратные блоки, так как используемое в ходе работы алгоритма ДВП (дискретное вейвлетное преобразование) работает на фрагментах любого размера. С другой стороны иногда, в случае, если объем памяти, доступный кодеру для работы, меньше, чем объем памяти, необходимый для кодирования всего изображения, выполняется разбиение изображения на квадратные тайлы, которые кодируются независимо друг от друга. Далее будет рассматриваться кодирование одного тайла. Остальные шаги аналогичны JPEG.

Пример разбиения изображения на тайлы

Рис. 8. Пример разбиения изображения на тайлы.

2.2. ДВП

JPEG2000 использует дискретное вейвлетное преобразование (Discrete Wavelet Transformation), для разбиения изображения на высокочастотные и низкочастотные области. ДВП обрабатывает каждую строку и столбец исходного изображения с помощью частотного фильтра.

Схема работы частотного фильтра

Рис. 9. Схема работы частотного фильтра.

В связи с тем, что каждый проход с использованием частотного фильтра на выходе увеличивает объем информации в два раза, после обработки размер изображения уменьшается в два раза. После одного этапа ДВП обрабатываемый фрагмент делится на четыре сегмента:

  • LL – низкие частоты по строкам и столбцам
  • HL – высокие частоты по строкам и низкие по столбцам
  • LH – низкие частоты по строкам и высокие по столбцам
  • HH – высокие частоты по строкам и столбцам

По стандарту количество этапов может быть от 0 до 32. Для обычного изображения используют от 4-х до 8-ми этапов. На каждом следующем этапе обрабатывается только низкочастотная область (LL), так как в высокочастотных областях обычно не содержится важной информации.

Схема выполнения одного этапа ДВП

Рис. 10. Схема выполнения одного этапа ДВП.


Последовательное применение ДВП к изображению

Рис. 11. Последовательное применение ДВП к изображению.

2.3. Округление

Для округления коэффициентов ДВП используется постоянный квантователь с мертвой зоной. (рис. 14) Для каждого фрагмента используется постоянное значение шага округления для всех коэффициентов этого фрагмента. Формула вычисления округленных значений представлена на рисунке 12. Здесь y - исходное значение коэффициента, sign(y) определяет знак коэффициента, а Δb - значение шага округления. Мертвая зона квантователя - это интервал диапазоном 2Δb около нуля, она дает большее количество нулей на выходе.

Формула округления коэффициентов Пример округления коэффициента
Рис. 12. Формула округления коэффициентов.
Рис. 13. Пример округления коэффициента.
Схема работы постоянного квантователя с мертвой зоной Пример работы квантователя
Рис. 14. Схема работы постоянного квантователя с мертвой зоной.
Рис. 15. Пример работы квантователя.

2.4. Кодирование

Кодирование полученных округленных коэффициентов выполняется поблочно. По стандарту JPEG2000 непосредственно перед кодированием фрагменты разбиваются на достаточно малые блоки (например, размером 32x32 или 64x64) так, чтобы все блоки одного фрагмента были одинакового размера. Разбиение на блоки выполняется для того, чтобы осуществить более гибкую организацию сжатой информации для повышения помехоустойчивости и так далее.

Пример разбиения фрагментов изображения на блоки
Рис. 16. Пример разбиения фрагментов изображения на блоки.

В JPEG2000 каждый блок кодируется по отдельности. Алгоритм кодирования обходит матрицу коэффициентов округления каждого блока полосами, как показано на рисунке 17. Блоки разбиваются на блоки с номинальной высотой 4. Далее полосы сканируются сверху вниз, а колонки в каждой полосе обходятся слева направо.

Порядок кодирования блоков
Рис. 17. Порядок кодирования блоков.

В процессе кодирования коэффициенты в блоке виртуально представляются в виде битовых плоскостей. Одну из таких плоскостей составляют знаки коэффициентов; остальные плоскости соответствуют различным разрядам величин коэффициентов (положение бита в плоскости соответствует положению коэффициента в блоке). Кодирование осуществляется по плоскостям: сначала кодируется плоскость, соответствующая старшему разряду коэффициентов, затем следующая по убыванию, и т.д. Может случиться так, что N наиболее приоритетных битовых плоскостей (НПБ-плоскостей), не будут содержать единиц. В этом случае НПБ-плоскостью становится первая по порядку плоскость, содержащая хотя бы одну единицу. Предшествующие ей пустые плоскости опускаются при кодировании, а информация о их количестве заносится в заголовок блока.

Арифметическое кодирование основано на контекстно-зависимой модели. Контекст формируется как функция от значений битов, окружающих кодируемый бит. Каждая битовая плоскость, кроме НБП, обычно кодируется в три прохода. Во время первого кодового прохода осуществляется распространение информации о значимости коэффициентов. Во время кодирования каждому коэффициенту в кодируемом блоке ставится в соответствие параметр значимость. Коэффициент называется значимым, если в уже закодированных на дынный момент битовых плоскостях, присутствует хотя бы один ненулевой разряд данного коэффициента.

Для каждого бита плоскости, если соответствующий коэффициент еще не является значимым, и если хоть один соседний коэффициент уже является значимым, осуществляется кодирование факта значимости для текущего коэффициента, то есть фактически осуществляется кодирование значения данного бита текущей кодируемой плоскости. Если кодируемый бит оказался ненулевым, сразу после его обработки кодируется соответствующий бит битовой плоскости знаков коэффициентов (кодирование знака).

Схема определения значимости текущего бита Формулы вычисления контекстно-зависимой значимости бита
Рис. 18. Схема определения значимости текущего бита.
Рис. 19. Формулы вычисления контекстно-зависимой значимости бита.
σ(i,j) - значимость бита в ячейке с координатами (i,j).

Во время второго прохода выполняется кодирование нетронутых в первом проходе битов коэффициентов, значимых на данный момент. В отличие от предыдущего прохода, когда решение о кодировании принималось на основе информации о значимости соседних коэффициентов, во время данного прохода биты кодируются в обязательном порядке.

Во время третьего, заключительного прохода выполняется обработка тех битов, которые не были обработаны во время первого и второго проходов. Во время этого заключительного этапа арифметическое кодирование применяется совместно с групповым кодированием.

Существенной деталью, предусмотренной стандартом, является возможность пропуска кодовых проходов, что является еще одним источником повышения эффективности за счет информационных потерь (первым, наиболее явным источником является квантование). Данная возможность активно используется для осуществления контроля над скоростью генерации кода.

2.5. Организация данных

Важным преимуществом рассматриваемого стандарта является возможность доступа к отдельным элементам изображения без полного декодирования его представления. Обеспечивается такая возможность, во-первых, разбиением исходного изображения на непересекающиеся области (тайлы), которые кодируются как отдельные изображения, а во-вторых, представлением кода отдельного тайла в виде частей (слоев), каждая из которых является суммарным кодом коэффициентов, соответствующих некоторой его (тайла) области. Слои в свою очередь делятся на так называемые пакеты, содержащие код блоков коэффициентов на разных уровнях декомпозиции. Для того, чтобы декодировать какую-либо область изображения, достаточно определить, каким тайлам она принадлежит, и какие слои, относящиеся к этим тайлам, содержат код блоков коэффициентов, необходимых для восстановления требуемой области.

Схема организации кода
Рис. 20. Схема организации кода.

Безусловно, «удобное» представление изображения не может быть выгодным с точки зрения эффективности сжатия. Действительно, с уменьшением размера структурных элементов (тайлов, областей тайлов, образующих слои и др.) эффективность сжатия несколько снижается. Стандарт в данном случае оставляет нам выбор: с одной стороны, мы имеем возможность получать информационные представления, позволяющие достаточно быстро извлекать и редактировать части изображения, с другой стороны, стандарт не препятствует созданию информационных представлений, эффективных по объему.

Для обеспечения помехоустойчивости и удобства доступа к информации в стандарте JPEG2000 предусмотрена система маркеров и маркерных сегментов. Маркерные сегменты содержат в себе параметры фрагментов информации ограниченных маркерами. Данные, начинающиеся с маркера, могут быть корректно проинтерпретированы без какой-либо дополнительной информации (это не означает возможность восстановления целого по фрагментам), что обеспечивает возможность частичного восстановления изображения, представление которого было повреждено. Введение элементов помехоустойчивости дает зеленый свет использованию стандарта во всевозможных телекоммуникационных приложениях.

Достижение высокого качества сжатия, безусловно, было одной из главных задач при создании стандарта, и здесь разработчики добились явного прогресса. Стандарт JPEG2000 превосходит по эффективности стандарт JPEG примерно в 2 раза при сжатии с потерями и на 5-20% при сжатии без потерь. Конечно, эффективность при сжатии без потерь в данном случае оказывается не такой высокой, как, скажем, у стандарта JPEG-LS, однако она вполне приемлема. Что же касается эффективности сжатия с потерями, здесь стандарт позволяет получать результаты, близкие к наилучшим на сегодняшний день результатам для подобного рода методов.

3. JPEG-LS

Формат JPEG-LS был основан на формате LOCO-I (Low Complexity Lossless Compression for Images). Алгоритм сжатия без потерь LOCO-I, принятый за основу при разработке стандарта JPEG-LS, впервые предусматривал не только lossless, но и near lossless режим (сжатие с ограниченными, задаваемыми пользователем потерями). В отличие от JPEG2000 lossless mode, JPEG-LS получился по-настоящему удачным: при большей эффективности сжатия новый стандарт обеспечивает высокую скорость компрессии/декомпрессии и не слишком требователен к ресурсам компьютера.

Важно понимать, что формат JPEG-LS:

  • не является расширением или модификацией метода JPEG;
  • не использует ни DCT (ДКП), ни арифметическое кодирование;
  • использует слабое квантование только в моде «почти без потерь»

3.1. Введение основных понятий и принципов работы

Сжатие данных без потерь состоит из двух отдельных независимых частей: моделирования (modeling) и кодирования (coding). Определим некоторые термины, которые будем активно использовать в дальнейшем:

Кодер (Encoder)
«отвечает» за процесс кодирования, а именно: получает на вход исходное изображение в цифровом формате и все необходимые параметры, определенные стандартом, и с помощью специального набора процедур создает набор данных, содержащих сжатое изображение
Декодер (Decoder)
«отвечает» за процесс декодирования и преобразование фрагментов, а именно: получая на вход данные со сжатым изображением и все необходимые параметры, выводит реконструированное изображение

Декодер JPEG-LS мало отличается от кодера, поэтому этот алгоритм сжатия можно назвать почти симметричным. Приведем упрощенную схему, показывающую принципы кодирования:

Упрощенная схема кодирования без потерь
Рис. 21. Упрощенная схема кодирования без потерь.

Немного информации об исходном изображении: как ниже показано на схеме (рис. 22), исходное изображение может состоять из Nf компонент. Каждая компонента Ci содержит двумерный массив пикселей (samples) из xi столбцов и yi строк. Размеры компонент зависят от двух параметров: X и Y, где X - максимум среди xi значений, а Y - максимум среди yi значений всех компонент. (В стандарте JPEG-LS целая глава посвящена отличиям в работе с мультикомпонентными изображениями по сравнению с однокомпонентными, однако в этой статье мы остановимся лишь на работе однокомпонентными изображениями).

Характеристики исходного изображения
Рис. 22. Характеристики исходного изображения.

На рисунке отмечена ориентация каждой компоненты: top (верх), bottom (низ), left (лево), и right (право). Порядок, в котором пиксели подаются на обработку процедурам кодирования, определен так: left-to-right (слева направо) и top-to-bottom (сверху вниз) по компоненте.

Для прогнозирования текущего пикселя x используются пиксели контекста a, b, c, d. В зависимости от контекста кодер выбирает моду: серийную (run mode) или регулярную (regular mode). Серийная мода выбирается, если y и z скорее всего будут совпадать, регулярная – в противном случае. Сделаем тут замечание, связанное с наличием опции «почти без потерь»: при включении этой опции серийная мода будет выбрана, если y и z будут почти совпадать в соответствии с параметром допустимого отклонения NEAR.

В случае использования серийной моды мы начинаем просмотр текущей строки с пикселя x и находим наибольшую длину серии пикселей, совпадающих с контекстным пикселем a. Таким образом, в пределах текущей строки мы получаем серию одинаковых пикселей, совпадающих по значению с известным нам пикселем a. Осталось только закодировать длину серии. (Это делается с помощью массива J из 32 элементов). Вы уже могли догадаться, что при включенной опции «почти без потерь» выбирается серия пикселей, близких к a с помощью параметра NEAR.

Теперь рассмотрим наши действия в случае использования регулярной моды. Для вычисления прогноза пикселя x (Px) используются величины пикселей a, b и c. Затем вычисляется так называемая ошибка прогноза (Errval). Ее значение равно разности значения x и Px. Errval корректируется некоторым членом, зависящим от контекста, а затем кодируется с помощью кодов Голомба. Код Голомба зависит от a, b, c, d и Errval этих же пикселей, которые хранятся в специальных массивах A и N. При включении опции «почти без потерь» перед кодированием ошибка прогноза ещё дополнительно квантуется.

Контекстные пиксели для пикселя x
Рис. 23. Контекстные пиксели для пикселя x.

3.2. Кодер

В основном JPEG-LS используется как метод сжатия информации без потерь, следовательно, восстановленный файл изображения обычно идентичен исходному файлу. В моде почти без потерь исходный и реконструированный образ могут отличаться. Будем обозначать реконструированный пиксель Rp, а исходный пиксель - p.

На стадии инициализации кодер выполняет следующие операции:

  • Вычисляются параметры RANGE = floor((MAXVAL + 2 * NEAR) / (2 * NEAR + 1)) + 1, qbpp = ceil(log RANGE), bpp = max(2, ceil(log(MAXVAL + 1))), LIMIT = 2 * (bpp + max(8, bpp)). (В случае кодирования без потерь NEAR = 0, RANGE = MAXVAL + 1. Если включена мода «почти без потерь», NEAR > 0). MAXVAL и NEAR - параметры, задаваемые приложением, реализующим алгоритм.
  • Инициализируются индексные массивы N[0..366], A[0..366], B[0..364] и C[0..364]. Поясним их предназначение: N[0..366] используется для хранения частоты вхождения каждого контекста, A[0..366] — для накопления величины ошибки предсказания, B[0..364] — для вычисления систематического отклонения, C[0..364] — для хранения величин корректирования ошибки прогноза.
  • Инициализируются переменные для серийной моды (run mode) RUNindex=0 и J[0..31] = {0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9,10,11,12,13,14,15}.
  • Инициализируются две вспомогательные переменные Nn[365], Nn[366]=0 для кодирования пикселя прерывания серии.

Введем некоторые функции и переменные, которые будут использоваться в дальнейшем:

GetNextSample()
Функция: получает информацию о следующем пикселе исходного изображения и устанавливает соответствующие значения переменных x, a, b, c, d, Ix, Ra, Rb, Rc, Rd. Если считанный пиксель лежит в конце строки, то GetNextSample() устанавливает EOLine = 1. Во всех остальных случаях EOLine = 0. Значения Ra, Rb, Rc, Rd наследуют свои значения от вычисленного прежде значения Rx.
EOLine
Глобальная переменная: устанавливается функцией GetNextSample(): равна 1, если текущий пиксель - последний в строке, равна 0 - в противном случае.
AppendToBitStream(a,b)
Функция: добавляет неотрицательное число в двоичной форме в поток из закодированных битов, используя b бит. Наиболее значимые биты добавляются первыми.
Quantize(a)
Функция: используется для квантования ошибки предсказания в режиме «почти без потерь».
ComputeRx()
Функция: возвращает реконструированное значение Rx для текущего пикселя (использует квантованную «ошибку предсказания»).

Из приведенного изображения (рис. 23) ясно, что немалую роль в кодировании пикселя x играют пиксели a, b, c и d. Попробуем разобраться, что происходит, когда эти пиксели отсутствуют. Так при кодировании верхней строки контекстные пиксели с, b и d отсутствуют, поэтому их значения считаются нулевыми. Если текущий пиксель находится в начале или конце строки, то пиксели a, с или d не определены. В этом случае для a и d используется реконструированное значение Rb пикселя b (или нуль для верхней строки), а для c используется реконструированное значение a при кодировании первого символа предыдущей строки. Таким образом, кодер должен выполнить часть работы декодера, реконструируя некоторые пиксели.

Кодер начинает работу со следующих трех шагов:

  1. Вычисление градиентов. D1 = Rd – Rb, D2 = Rb – Rc, D3 = Rc – Ra. Если все эти величины равны нулю (или в моде почти без потерь их абсолютные значения не превосходят порога NEAR), то кодер переходит в серийную моду и ищет наибольшую длину серии пикселей, совпадающих с Ra.
  2. Сравнение трех градиентов Di с некоторыми параметрами и вычисление зонных чисел Qi по некоторым несложным правилам, которые здесь мы приводить не будем. Каждое зонное число Qi может принимать одно из 9 целых значений в интервале [—4,4], поэтому имеется всего 9x9x9 = 729 троек зонных чисел.
  3. Вычисление числа Q из интервала [0,364] с использованием абсолютных значений произведений зонных чисел Qi (всего разных троек будет 365, так как одна из 729 величин равна нулю) для вычисления. Детали этих вычислений не предписываются стандартом JPEG-LS, и кодер может делать это по любому правилу. Число Q становится контекстом текущего пикселя x. Используются индексные массивы А и N, работа с которыми описана далее.

После установления контекста Q, кодер прогнозирует пиксель х. Сначала производится вычисление прогноза Рх с помощью так называемого «правила края» (edge-detecting predictor):

if (Rc > = max(Ra, Rb)) Px = min(Ra, Rb);
  else {
    if (Rc <= min(Ra, Rb))
      Px= max(Ra, Rb);
    else
      Px = Ra + Rb - Rc;
  }

Поясним суть «правила края». Для этого рассмотрим случай b < а. При этом условии «правило края» выбирает b в качестве прогноза х во многих случаях, когда вертикальный край изображения находится непосредственно слева от х. Аналогично, пиксель а выбирается в качестве прогноза х во многих случаях, когда горизонтальный край находится непосредственно над х. Если край не обнаруживается, то «правило края» вычисляет прогноз в виде а + b — с, что имеет простую геометрическую интерпретацию. Если каждый пиксель является точкой трехмерного пространства, то прогноз а + b - с помещает Рх на ту же плоскость, что и точки а, b и с.

Следующий шаг — корректировка прогноза (prediction correction from the bias) с помощью числа SIGN (зависящего от трех зонных чисел Qi), корректирующих величин C(Q) (выводимых из систематических смещений, и здесь не обсуждаемых) и параметра MAXVAL.

if (SIGN == +1)
  Px = Px + C(Q);
else
  Px = Px - C(Q);
  
if (Px > MAXVAL)
  Px = MAXVAL;
else if (Px < 0)
  Px = 0;

После того, как прогноз Рх найден, кодер вычисляет ошибку прогноза Errval в виде разности х - Рх, но меняет знак, если величина SIGN отрицательная.

В моде почти без потерь ошибка квантуется, и кодер использует это реконструированное значение Rx пикселя х так же, как это будет делать декодер. Основной шаг квантования заключается в следующем:

if (Errval > 0)
  Errval = (Errval + NEAR) / (2 * NEAR + 1);
else
  Errval = - (Errval - NEAR) / (2 * NEAR + 1);

При этом используется параметр NEAR, однако имеются некоторые детали, которые здесь не приводятся. Основной шаг реконструкции состоит в нахождении Rx = Px + SIGN * Errval * (2 * NEAR + 1).

Ошибка прогноза (после возможного квантования) претерпевает сокращение области (modulo reduction). (После этого она готова для главного этапа кодирования).

if (Errval < 0)
  Errval = Errval + RANGE;
if (Errval >= ((RANGE + 1) / 2))
  Errval = Errval - RANGE;

Коды Голомба введены здесь (основной параметр был обозначен через b). В JPEG-LS этот параметр обозначается m. Если число m уже выбрано, то код Голомба неотрицательного целого числа n состоит из двух частей: унарного кода целой части числа n/m и двоичного представления n mod m. Этот код является идеальным для целых чисел, имеющих геометрическое распределение (то есть, когда вероятность числа n равна (1 - r) * rn, 0 < r < 1). Для каждого геометрического распределения найдется такое число m, что код Голомба, построенный по m, имеет наименьшую возможную среднюю длину. Простейший случай, когда m равно степени 2 (m = 2k), приводит к простым операциям кодирования/декодирования. Код числа n состоит в этом случае из k младших разрядов числа n, перед которыми стоит унарный код числа, составленного из остальных старших разрядов числа n. Этот специальный код Голомба обозначается через G(k).

Для примера вычислим код G(2) числа n = 19 = 100112. Поскольку k = 2, то m = 4. Начнем с двух младших разрядов, 112, числа n. Они равны 3, что то же самое, что n mod m (3 = 19 mod 4). Оставшиеся старшие разряды, 1002 дадут число 4, которое равно целой части n/m (19/4 = 4.75). Унарный код 4 равен 00001, значит код G(2) числа n = 19 равен 00001|11.

На практике всегда имеется конечное число неотрицательных целых чисел. Обозначим наибольшее число через I. Наибольшая длина G(0) равна I + 1, а поскольку I может быть велико, желательно лимитировать размер кода Голомба. Это делается с помощью специального кода Голомба LG(k, glimit), который зависит от двух параметров k и glimit. Сначала следует сформировать число q из самых старших разрядов числа n. Если q < glimit— [log I] — 1, то код LG(k, glimit) совпадает с кодом LG(k]. В противном случае, приготавливается унарный код числа glimit — ceil(log I) — 1 (то есть, glimit — ceil(log I) — 1 нулей, за которыми стоит единственная 1). Это действует как код esc, после которого стоит двоичный код n — 1 из ceil(log I) бит.

Ошибки прогнозов не обязательно являются положительными числами. Они равны некоторым разностям, которые могут быть нулевыми или отрицательными. Однако коды Голомба были построены для положительных чисел. Поэтому перед кодированием отрицательные значения ошибок следует отразить на множество неотрицательных чисел. Для этого используется отображение:
  MErrval =
    2 * Errval    если Errval >= 0,
    2 * |Errval|  если Errval < 0.

Это отображение перемежает отрицательные и положительные величины в виде последовательности 0, -1, +1, -2, +2, -3,....

В нижеприведенной таблице перечислены некоторые ошибки прогноза, отображенные значения и их коды LG(2, 32) при условии, что алфавит имеет размер 256 (то есть, I = 255 и ceil(log I) = 8).

Таблица: ошибки прогнозов, отображения и коды LG(2, 32)

Ошибка прогноза Отображенное значение Код
0 0 1 00
-1 1 1 01
1 2 1 10
-2 3 1 11
2 4 01 00
-3 5 01 01
3 6 01 10
-4 7 01 11
4 8 001 00
-5 9 001 01
5 10 001 10
-6 11 001 11
6 12 0001 00
...
50 100 000000000000
000000000001
01100011

Теперь необходимо обсудить выбор параметра k для кодов Голомба. Это делается адаптивно. Параметр k зависит от контекста, и его значение обновляется каждый раз, когда обнаруживается пиксель с этим контекстом. Вычисление k можно выразить простой строкой:
for (k=0; (N[Q]<<k) < A[Q]; k++),
где А и N - массивы индексов от 0 до 364. В этой формуле используется контекст Q в качестве индекса двух массивов. В начале k инициализируется нулем, а затем совершается цикл. На каждой итерации цикла элемент массива N[Q] сдвигается влево на k разрядов и сравнивается с A[Q]. Если сдвинутое значение N[Q] больше или равно A[Q], то выбирается текущее значение k. В противном случае, k увеличивается на 1, и тест повторяется.

После нахождения числа k, ошибка прогноза Errval преобразуется с помощью уравнения в число MErrval, которое кодируется с помощью кода LG(k, LIMIT). Число LIMIT является параметром. Обновление массивов А и N (вместе со вспомогательным массивом B) иллюстрирует следующий фрагмент кода (параметр RESET устанавливается приложением):

B[Q] = B[Q] + Errval * (2 * NEAR + 1);
A[Q] = A[Q] + abs(Errval);
if (N[Q] == RESET) {
  A[Q] = A[Q]>>1;
  B[Q] = B[Q]>>1;
  N[Q] = N[Q]>>1;
}
N[Q] = N[Q] + 1;

Теперь поговорим о просчитывании систематического отклонения прогноза. Значение C[Q], корректирующее прогноз, должно быть обновлено в конце кодирования пикселя x. Для этого необходимы две переменные — B[Q] и N[Q]. N[Q] — это количество вхождений контекста Q с момента инициализации. B[Q] — систематическое отклонение, позволяющее обновлять значение C[Q] как максимум один раз за итерацию. Итак, прогнозирующее значение C[Q] вычисляется в соответствии со следующим кодом:

if (B[Q] <= -N[Q]) {
  B[Q] = B[Q] + N[Q];
  if (C[Q] > MIN_C)
    C[Q] = C[Q] - 1;
  if (B[Q] <= -N[Q])
    B[Q] = -N[Q] + 1;
}
else if (B[Q] > 0) {
  B[Q] = B[Q] - N[Q];
  if (C[Q] < MAX_C)
    C[Q] = C[Q] + 1;
  if (B[Q] > 0)
    B[Q] = 0;
}

Константы MIN_C и MAX_C — это минимальное и максимальное возможное значение индексного массива C[0..364], равные соответственно -128 и 127.

Кодирование в серийной моде делается иначе. Напомним, что кодер выбирает эту моду, когда обнаруживает последовательные пиксели x, чьи значения Ix совпадают и равны восстановленной величине Ra контекстного пикселя a. Для опции «почти без потерь» пиксели в серии должны иметь значения Ix, которые удовлетворяют неравенству |Ix - Ra| <= NEAR. Серия не должна выходить за пределы текущей строки. Длина серии кодируется (сам пиксель кодировать не нужно, поскольку он равен Ra), и если конец серии находится раньше конца строки, то после ее закодированной длины будет сразу записан код следующего пикселя (который прерывает серию). Две основные задачи кодера в этой моде состоят

  1. в отслеживании серии и кодировании ее длины;
  2. в кодировании пикселя, прервавшего серию.

Отслеживание серии можно проводить следующим образом:

RUNval = Ra;
RUNcnt = 0;
while (abs(Ix - RUNval) <= NEAR) {
  RUNcnt = RUNcnt + 1;
  Rx = RUNval;
  if (EOLine == 1)
    break;
  else
    GetNextSample();
}

Поясним некоторые введенные величины: RUNcnt — это счетчик повторяющихся пикселей (для серийной моды), а RUNval - текущее значение реконструированного повторяющегося пикселя.

Опишем процесс кодирования серий. Первый фрагмент кода описывает кодирование для сегментов серий длины rm:

while (RUNcnt >= (1<<J[RUNindex])) {
  AppendToBitStream(1, 1);
  RUNcnt = RUNcnt - (1<<J[RUNindex]);
  if (RUNindex < 31))
    RUNindex = RUNindex + 1;
}

Следующий же код иллюстрирует кодирование для сегментов серий длины меньше, чем rm:

if (EOLine == 0) {
  AppendToBitStream(0, 1);
  AppendToBitStream(RUNcnt, J[RUNindex]);
  if (RUNindex > 0)) {
    RUNindex = RUNindex - 1;
  }
else if (RUNcnt > 0)
  AppendToBitStream(1, 1);

Здесь кодер использует таблицу J, состоящую из 32 записей, обозначаемых rk. J инициализируется величинами
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 9, 10, 11, 12, 13, 14, 15.

Для каждого значения rk обозначим rm = 2rk. Числа rm (их всего 32) называются порядком кода. Первые 4 величины rk имеют rm = 20 = 1. Для второй четверки rm = 21 = 2, а для следующей четверки rm = 22 = 4. Для последнего числа rm = 215 = 32768. Кодер выполняет процедуру, описанную этим кодом, для нахождения длины серии, которая сохраняется в переменной RUNlen. Затем эта переменная кодируется разбиением на слагаемые, величины которых равны последовательным числам rm. Например, если RUNlen=6, то его представляют в виде 6 = 1 + 1 + 1 + 1 + 2 с помощью первых пяти чисел rm. Оно кодируется с помощью 5 бит. Запись производится инструкцией AppendToBitStream(l,l). Каждый раз, когда пишется 1, соответствующая величина rm вычитается из RUNlen. Если RUNlen было равно в начале 6, то она последовательно уменьшается до 5, 4, 3, 2 и 0.

Может случиться, что длина RUNlen серии не равна целой сумме чисел rm. Например, RUNlen = 7. В этом случае в качестве кода записывается пять битов 1, за которыми следует префиксный бит и остаток от RUNlen (в нашем примере это 1), который запишется в файл в виде числа из rk бит (текущее значение rk из нашего примера равно 2). Эта последняя операция выполняется вызовом процедуры AppendToBitStream (RUNcnt, J[RUNindex]). Префиксным битом служит 0, если серия прерывается в строке другим пикселем. Если же серия идет до конца строки, то префиксный бит равен 1.

Вторая основная задача кодера, состоящая в кодировании пикселя прерывания серии, делается аналогично кодированию текущего пикселя. Обсудим детали её реализации.

Рассмотрим ситуацию, когда ход кодирования прерван концом строки пикселей: как будет кодироваться новый пиксель, вызывающий прерывание? Этот вопрос решается кодированием разницы между значением Ix в текущей позиции x и реконструированным значением пикселей a или b (напомним, что это соседние пиксели по отношению к x - см. рис. 23). В этом случае рассматриваются две различные ситуации: первая, когда abs(Ra - Rb) <= NEAR, вторая - в противном случае. По сути кодирование пикселя прерывания серии происходит теми же методами, что и кодирование нового пикселя в регулярной моде с тем лишь дополнением, что Ix должно отличаться от Ra на величину большую NEAR, иначе ход кодирования будет продолжен. Опишем операции, которые должны быть выполнены:

if (abs(Ra - Rb) <= NEAR)
  RItype = 1;
else
  RItype = 0;
if (RItype == 1)
  Px = Ra;
else
  Px = Rb;
Errval = Ix - Rb;

Фрагмент кода выше определяет индекс RItype и ошибку предсказания для пикселя x. Затем следует в случае необходимости изменить знак Errval, а для опции «почти без потерь» также провести квантование ошибки предсказания:

if ((RItype == 0) && (Ra > Rb)) {
  Errval = -Errval;
  SIGN = -1;
else
  SIGN = 1;
if (NEAR > 0) {
  Errval = Quantize(Errval);
  Rx = ComputeRx();
}
else
  Rx = Ix;
Errval = ModRange(Errval, RANGE);

Теперь вычислим вспомогательную переменную TEMP, которая будет использоваться для вычисления параметра k в кодах Голомба.

if (RItype == 0)
  TEMP = A[365];
else
  TEMP = A[366] + (N[366]>>1);

Установим Q = RItype + 365. Параметр k для кодов Голомба будем вычислять следующим образом: for (k=0; (N[Q]<<k) < TEMP; k++). В зависимости от значений параметра k и переменной Errval вычисляется флаг map, который затем используется при вычислении EMErrval: EMErrval = 2 * abs(Errval) - RItype - map. После этого значение EMErrval кодируется почти так же, как и в регулярной моде. Проиллюстрируем кодом только обновление переменных при кодировании пикселя прерывания серии:

if (Errval < 0) {
  Nn[Q] = Nn[Q] + 1;
A[Q] = A[Q] + ((EMErrval + 1 -RItype)>>1);
if (N[Q] == RESET) {
  A[Q] = A[Q]>>1;
  N[Q] = N[Q]>>1;
  Nn[Q] = Nn[Q]>>1;
}
N[Q] = N[Q] + 1;

На этом и завершим описание кодера JPEG-LS. Отметим, что оно, безусловно, неполное, но мы и не ставили перед собой цели — скопировать стандарт этого метода. Все опущенные детали вы сможете найти в стандарте. Сейчас же перейдем к краткому описанию принципов работы декодера.

3.3. Декодер

Как упоминалось ранее, метод JPEG-LS почти симметричный, поэтому копировать с небольшими изменениями описание кодера мы не будем — эту информацию можно прочитать и в стандарте. Остановимся лишь на том, как происходит декодирование в серийной моде. После того, как вычислены все величины для текущего пикселя, считывается новый бит R из потока битов. Если он равен 1, то:

  1. Изображение дополняется 2J|RUNindex| пикселями со значением Ra.
  2. Если на предыдущем шаге изображение уже было дополнено 2J|RUNindex| пикселями и RUNindex < 31, то RUNindex увеличивается на 1. Если последний пиксель в строке ещё не декодирован, то мы снова считываем биты, в противном случае переходим к вычислению всех требуемых величин.

Если же бит равен 0, то:

  1. Считывается J|RUNindex| бит из битового потока и преобразовывается в число, а изображение дополняется пикселями со значениями Ra в количестве, соответствующем вычисленному числу.
  2. Если RUNindex > 0, то RUNindex уменьшается на 1.
  3. Декодируется пиксель прерывания серии и снова начинается вычисление всех необходимых величин.

3.4. Формат файла

Сжатый файл состоит:

  • из сегментов данных, содержащих коды Голомба и длины серий;
  • из сегментов маркеров (информация необходимая декодеру);
  • из сегмента «остальных» маркеров (некоторые зарезервированные маркеры JPEG).

Маркером здесь мы называем байт из единиц, за которым следует специальный код, сигнализирующий о начале нового сегмента. Если за маркером следует байт, у которого старший бит равен 1, то этот байт является началом сегмента маркеров. В противном случае, начинается сегмент данных.

3.5. Коды Голомба

Мы уже не раз упоминали коды Голомба. Что же это такое? Код Голомба неотрицательного целого числа «может быть эффективным кодом Хаффмана». Он зависит от выбора некоторого параметра b. Принцип кодирования таков:

  • вычисляются две величины
    q = floor((n - 1) / b) и
    r = n - qb - 1;
  • происходит построение кода из двух частей: первая часть — q в унарном коде, вторая часть — двоичное выражение для r, состоящее из floor(log2b) бит для малых остатков и из ceil(log2b) бит для больших.

Мы не приводим математическое обоснование использования кодов Голомба в JPEG-LS, отметим лишь, что, если входной поток данных состоит из целых чисел, причем вероятность числа n равна P(n) = (1 - p)n - 1p  (0 <= p <= 1), то коды Голомба будут оптимальными кодами для этого потока данных, если выбрать параметр b следующим образом:
(1 - p)b + (1 - p)b + 1 <= 1 <= (1 - p)b - 1 + (1 - p)b.

3.6. Заключение

Формат JPEG-LS разрабатывался, прежде всего, для хранения изображений в медицинских целях, то есть для тех случаев, когда важно иметь большое изображение без малейших потерь качества. Как уже говорилось, за основу был взят формат LOCO-I, разработанный в стенах «HP Labs». Затем он был доработан совместными усилиями «HP» и «Mitsubishi». Обе компании разрешили использовать их патенты на этот формат без оплаты лицензии, поэтому JPEG-LS можно встретить и в обычных программах для PC.

Источники

  1. Сэломон Д. Сжатие данных, изображений и звука. — М.: Техносфера, 2004. — 368с.
  2. Wallace G. The JPEG Still Picture Compression Standard, IEEE Transactions on Consumer Electronics, Dec. 1991. [PDF]
  3. Karen L. Gray. The JPEG2000 Standard, Technische Universitat Munchen Lehrstuhl fur Kommunikationsnetze. [PDF]
  4. Marcelo J. Weinberger and Gadiel Seroussi. The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS, Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA. [PDF]
  5. Lossless and near-lossless coding of continuous tone still images (JPEG-LS), ISO/IEC JTC 1/SC 29/WG 1 FCD 14495 - public draft, 1997. [PDF]
  6. Сайт www.jpeg.org.
  7. Сайт www.compression.ru.

Авторы: Рыбаков Г., Суслов А.


Александр / 2008-02-26 21:28:43

Отличная статья об основных понятиях, но вот в чем недостаток таких статей, нет глубины ссылок в тексте для дальнейшего применения. Очень похожи все такие статьи, отличаются тем, что что-то добавлено, что-то убрано.

Поясню на собственном примере. Может быть и поможете мне в понимании некоторых вещей. Задача поставленная передо мной самим собой следующая. Передать кадр (по команде) из WEB камеры в память сотового телефона с последующей передачей на другой сотовый. Из Вашей статьи не понятно, на какой формат следует забазироваться, доступность алгоритма. Далее - сосинусное преобразование - только поверхностное толкование, а где посмотреть детальный алгоритм с конкретным примером (скажете учи мат. анализ, но и там почти нет конкретных примеров, а если есть, то пропущены целые куски расчетов. Может есть конкретная методичка, так сошлитесь. Структуру организации файла вообще выкинули и даже ссылок не указали. "В получаемой матрице низкочастотные компоненты расположены ближе к левому верхнему углу, а более высокочастотные смещаются вправо вниз", мне кажется, что она так делается, а не получается (может ошибаюсь!).

Вопрос: как из JPG кадра отловить например только нужную информацию для дальнейшего декодирования в разрешении экрана телефона, не применяя PC, используя МК. Достаточно черно-белого варианта кадра. На какие FFxx надо обратить внимание и записать только ту информацию. Где взять структуру кадра WEB камеры. Я понимаю, что вопрос сложен, многопланов. Что например на МК не сделать расшифровку кадра и сжать затем с нужным разрешением, но вот вырезать хотя-бы верхний угол с нужным форматом это наверное можно.

Буду благодарен за информацию.

Что умею = программировать на VB, МК. Самостоятельная действующая интерактивная разработка управлением по сот.телефону несколькими реле, аудиоконтроль с использованием сотового телефона.

jpegls / 2008-05-21 08:50:20

Вдруг кому пригодится: хардверная реализация (на FPGA, написана на VHDL) сжатия JPEG-LS на сайте jpegls.narod.ru

Николай / 2010-06-22 22:20:12

>> Вторым шагом является непосредственно применение >>алгоритма кодирования повторов (LZW)

может, RLE?

Разумеется, на этом шаге JPEG (см. контект), — RLE. Спасибо за обнаружение погрешности.

Игонин Олег / 2014-08-07 11:51:11

Спасибо за статью.

Ваше имя
Email
Текущий день недели (строчными буквами)
Комментарий