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CALCULATION OF PFAFFIANS BY A CHIP REMOVAL

V. E. Aksenov∗ and K. P. Kokhas† UDC 519.148, 519.177.3

We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.”
It generalizes the well-known Urban Renewal trick of Propp and Kuperberg. The chip removal is
useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A
beautiful example of this technique is a theorem on removing four-contact chips, which generalizes
Kuo’s graphical condensation method. Numerous examples are given. Bibliography: 10 titles.

1. Introduction. Let G be an arbitrary (undirected) graph. Consider an arbitrary orien-
tation of its edges. In this paper, we suggest a combinatorial technique for calculating the
Pfaffian Pf(G), which generalizes the “Urban Renewal” trick of Kuperberg and Propp for
counting the number of matchings in a graph and the chip removal technique developed by
the authors in [1]. Both approaches are special cases of the diagonalization of block matrices,
and they have a very transparent combinatorial interpretation.

We calculate the Pfaffian Pf(G) by means of a special operation, the chip removal. By a
chip H we mean an arbitrary induced subgraph of G with an even number of vertices. A
vertex of a chip that has an outgoing edge (i.e., an edge whose second endpoint lies outside H)
will be called external, and the second endpoint of an external edge will be called a contact.
The chip removal operation consists of two steps: 1) we remove the chip H and all its external
edges from the graph, and 2) after that, we “repair” the remaining part of the graph by joining
some contacts with new weighted edges which we call jumpers. The location and weights of
the jumpers depend on the chip. Denote by G′ the graph obtained by this operation. The
main property of the chip removal is that

Pf(G) = Pf(H) Pf(G′).

In Sec. 2, we give necessary background on Pfaffians and describe the general scheme of chip
removal in terms of the antisymmetric adjacency matrix of the graph. In Sec. 3, we describe
the chip removal operation in terms of Pfaffians. In Sec. 4, we give examples of counting the
number of matchings in graphs of the form G × Pn by means of the chip removal technique.
As a corollary, we obtain an assertion on the number of matchings in a rectangle. In Sec. 5,
we apply this technique to count the number of matchings in graphs on the hexagonal lattice
and describe the remarkable “Arnold’s snakes,” graphs for which the numbers of matchings
are the Euler–Bernoulli numbers.

2. The general scheme of chip removal. We need to consider the technical details of the
definition of the Pfaffian. Below is a collection of known facts and definitions; for details, see
Fulmek’s article [6].

1. Let W = (wij)1≤i<j≤2n be a given triangular array of numbers. Let

μ = {(i1, i2), . . . , (i2n−1, i2n)}
be an arbitrary matching (= splitting into pairs) of the set {1, 2, . . . , 2n} (in each pair, the
smaller number should be written first). Then the sign sgn(μ) is, by definition, the sign of
the permutation (i1i2i3i4 . . . i2n−1i2n), the weigth w(μ) of M is given by the formula w(μ) =
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wi1,i2wi3,i4 . . . wi2n−1,i2n , and the Pfaffian Pf W is equal to Pf W =
∑

sgn(μ)w(μ), where the
summation runs over all matchings μ of the set {1, 2, . . . , 2n}.

2. In the above definition, we can replace the set {1, 2, . . . , 2n} by an arbitrary ordered set
with an even number of elements. Let μ = {(i1, i2), . . . , (i2n−1, i2n)} be an arbitrary matching
of the set {1, 2, . . . , 2n}, and let μ′ be the matching obtained from μ by removing one pair
(ik, ik+1) with the subsequent shift of indices. Then sgnμ = (−1)ik+ik+1+1 sgn μ′.

3. Now let G be an arbitrary weighted graph with an even number of vertices, indexed by
1, 2, . . . , 2n. Denote by w′

ij the weight of an edge (vi, vj). We may think that G is the complete
graph on 2n vertices with some edges having weight 0. Choose an arbitrary orientation of the
edges of G and consider the corresponding antisymmetric adjacency matrix Ã(G) = (wij).
Thus we have wij = ±w′

ij depending on the orientation of the edge vivj . Take the upper
triangular part of the matrix Ã(G) as an array W . By definition, Pf(G) = Pf Ã(G) = Pf W .

4. The following formula (Cayley’s theorem) holds:

det Ã(G) = (Pf Ã(G))2. (1)

This can be proved by constructing a bijection between the summands of the form
sgn(σ) · α1,σ(1)α2,σ(2) . . . α2n,σ(2n) in the definition of the determinant and the pairs of match-
ings sgn(μ)w(μ) sgn(ν)w(ν) appearing in the right-hand side when we write Pfaffians as sums
and remove the parentheses. When constructing this bijection, we may assume that the factor
αi,σ(i) corresponds to the first Pfaffian.

Due to Cayley’s formula (1), the calculation of the Pfaffian reduces to the calculation of the
determinant of the adjacency matrix. We will adapt the chip removal technique for calculating
determinants developed by the authors in [1] to calculating Pfaffians.

For a given graph G, a chip is an arbitrary induced subgraph of G with an even number of
vertices. A vertex of the chip that has an outgoing edge (i.e., an edge whose second endpoint
lies outside H) will be called external, and the second endpoint of an external edge will be
called a contact.

Consider an arbitrary orientation of the edges of the graph G. A typical example is a
Pfaffian orientation. Denote by Ã(G) the antisymmetric adjacency matrix of the graph G.
Let a chip H contain h vertices and have k contacts. Then the matrix Ã(G) has a block form:

Ã(G) =

⎛

⎝
Ã(H) K 0
−Kᵀ L ∗

0 ∗ ∗

⎞

⎠ , (2)

where K is an h × k block that encodes the connections of the chip to the contacts, L is a
(possibly zero) k × k block that encodes the edges of the graph G between the contacts, and
the stars correspond to other possible edges outside of the chip. Multiplying the matrix Ã(G)

by D =
(

E 0 0
KᵀÃ(H)−1 E 0

0 0 E

)

does not change the determinant, hence

det Ã(G) = detD · Ã(G) = det

⎛

⎝
Ã(H) K 0

0 L̃ ∗
0 ∗ ∗

⎞

⎠ = det Ã(H) · det
(

L̃ ∗
∗ ∗

)

,

where
L̃ = L + KᵀÃ(H)−1K. (3)

We interpret the changes in the block L as a “repair,” or “installation of jumpers,” i.e.,
creating additional edges between contacts. The weights of these edges are specified in the
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matrix −KᵀÃ(H)−1K. Denote the graph obtained by the repair by G′. The matrix
(

L̃ ∗∗ ∗
)

is
exactly the antisymmetric adjacency matrix of the repaired graph Ã(G′). Thus

det Ã(G) = det Ã(H) · det Ã(G′),

and, by Cayley’s theorem,

Pf Ã(G) = ±Pf Ã(H) · Pf Ã(G′).

3. Applications to calculating Pfaffians and matching numbers. In this section, we
describe the weights of the jumpers installed during the chip removal operation in combinatorial
terms (Theorem 3.4).

Let G be an arbitrary graph with an even number of vertices. In particular, we do not
assume that G is bipartite. Consider an arbitrary orientation of the edges of G, and let Ã(G)
be the antisymmetric adjacency matrix corresponding to this orientation. Assume that the
vertices of G are numbered and denote by αk� the entries of the matrix Ã(G) according to
this numbering. Denote by Gij the directed graph obtained from G by removing the vertices
vi and vj ; and by G̃ij , the graph obtained from G by removing all outgoing edges of the ith
vertex and all ingoing edges of the jth vertex. Let Ãij be the matrix obtained from Ã(G) by
deleting the ith row and jth column.

Lemma 3.1. |det Ãij | = |Pf Ã(G) Pf Ã(Gij)|.
Proof. Denote by Ãijji the matrix obtained from Ã(G) by deleting the ith and jth rows and
the ith and jth columns. Apply the Dodgson condensation formula for determinants:

det Ã(G) det Ãijji = det Ãii det Ãjj − det Ãij det Ãji.

Here det Ãij = − det Ãji since the matrix Ã(G) is antisymmetric; and det Ãii = det Ãjj = 0
since these are antisymmetric matrices of odd order. Expressing the determinants in the
left-hand side by formula (1), we obtain the desired equality. �

In the following theorem, we remove the absolute value signs in the assertion of Lemma 3.1.

Theorem 3.2. For i < j, we have det Ãij = −Pf Ã(G) Pf Ã(Gij).

Proof. Write the determinant det Ãij in the form

(−1)i+jαij det Ãij =
∑

σ

sgn(σ)α1,σ(1)α2,σ(2) . . . α2n,σ(2n),

where the sum runs over the elements of the symmetric group S2n for which σ(i) = j (so each
summand in the right-hand side contains the factor αij). Using the bijection from the proof
of Cayley’s theorem, we can rewrite the sum in the form

∑

σ

sgn(σ)α1,σ(1)α2,σ(2) . . . α2n,σ(2n) =
∑

μ,ν

(sgn(μ) · w(μ)) · (sgn(ν) · w(ν)),

where the sum runs over pairs of matchings and we may assume that in the right-hand side
the factor αij in each summand corresponds to an edge vivj that belongs to the matching μ.
Denote by μ′ the matching of the graph Gij obtained by removing the edge vivj from μ. It
is clear that every matching of Gij can be obtained in this way from an appropriate (and
uniquely determined) matching μ and sgn μ = (−1)i+j+1 sgn μ′. Then

∑

μ,ν

(sgn(μ) · w(μ)) · (sgn(ν) · w(ν)) =
∑

μ′,ν

(−1)j+i+1αij(sgn(μ′)w(μ′)) · (sgn(ν) · w(ν)).
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Thus
(−1)i+jαij det Ãij = (−1)j+i+1αij

∑

μ′,ν

(sgn(μ′)w(μ′)) · (sgn(ν) · w(ν)).

Canceling (−1)i+jαij finishes the proof. �

Theorem 3.3. Let B = (bij) = Ã(G)−1 and Pf Ã(G) �= 0. Then the matrix B is antisymmet-
ric and for i < j,

bij = (−1)i+j Pf Ã(Gij)

Pf Ã(G)
.

Proof. We have det Ãij = − det Ãji, because the matrices are antisymmetric. Then, by
Kramer’s formulas and Theorem 3.2,

bij = (−1)i+j det Ãji

det Ã(G)
= (−1)i+j Pf Ã(Gij) Pf Ã(G)

(Pf Ã(G))2
= (−1)i+j Pf Ã(Gij)

Pf Ã(G)
. �

Remark. It is well known that if vi and vj are adjacent vertices in a planar bipartite graph,
then the absolute value of the entry bij of the inverse Kasteleyn matrix is equal to the proba-
bility that the random matching contains the domino vivj (see [7]). This assertion is a special
case of Theorem 3.3.

Now we can describe the chip removal technique in terms of Pfaffians. Assume for simplicity
that every external vertex of the chip is joined with one contact only. Besides, we assume that
the vertices of the graph are numbered in such a way that the numbers of all vertices of the
chip are smaller than the numbers of all other vertices of the graph.

Theorem 3.4. Let vi1 , vi2 , . . . , vik be the external vertices of the chip H and vj1, vj2 , . . . , vjk

be the corresponding contacts. Let Pf Ã(G) �= 0. For ir < is, define the weight of the new
jumper between the vertices vjr and vjs by the formula

w(vjrvjs) = (−1)ir+iswirjrwisjs

Pf Ã(H \ {vir , vis})
Pf Ã(H)

. (4)

Then the following equalities hold:

det(Ã(G)) = det(Ã(H)) · det(Ã(G′)) and Pf(Ã(G)) = Pf(Ã(H)) · Pf(Ã(G′)).

Observe that formula (4), in fact, determines the entry Ã(G′)jr,js of the antisymmetric
matrix Ã(G′). Therefore, this formula determines the orientation of the new jumpers (though
this orientation depends on whether we want the weight to be positive or not).

Proof. The claim follows from the general chip removal scheme (3). Write the matrix Ã(G) in
the block form (2), let (bij) = Ã(H)−1. Since ir < jr, the entry αjrir is in the block Kᵀ and
equals −wirjr . The weight of the jumper calculated by formula (3) equals wirjrwisjsbiris . Now
we can calculate biris by Theorem 3.3 and use formula (1). The formula for determinants is
proved.

Due to Cayley’s formula (1), we can take the square root and obtain

Pf(Ã(G)) = ±Pf(Ã(H)) · Pf(Ã(G′)).

Let us check that the correct sign here is the “plus” sign. Consider an arbitrary matching of G
that is the union of a matching of H and a matching of the remaining graph G \ H. Assign
a large positive weight to each edge of this matching (this weight should be greater than the
number of matchings in G), and let the other edges of the graph have weight 1. It suffices to
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check that the contributions of this matching to both sides of the equality under consideration
have the same sign.

Assume that the matching contains edges (i1, i2), . . . , (i2k−1, i2k) of the chip H and edges
(j1, j2), . . . , (j2m−1, j2m) of the remaining part of the graph. We have ip < jq for all p and q, by
the restriction on the numbering of the vertices. The sign of each summand in the definition
of the Pfaffian Pf Ã(H) is the product of the sign of the permutation (i1, i2, . . . , i2k−1, i2k)
and the signs of the edges imposed by the orientation. The product of the latter signs equals
(−1)s(H), where s(H) is the number of edges whose starting point has a greater number than
the endpoint. The analogous rule works for the other two Pfaffians. But it is clear that

sgn(i1, i2, . . . , i2k−1, i2k) · (−1)s(H) · sgn(j1, j2, . . . , j2m−1, i2m) · (−1)s(G\H)

= sgn(i1, i2, . . . , i2k−1, i2k, j1, j2, . . . , j2m−1, i2m) · (−1)s(G),

and the assertion follows. �
Remark. In the case where the graph G has a Pfaffian orientation (it is a Pfaffian orientation
for the chip, too), we have

M(G) = ±M(H) Pf(G′).
This equality generalizes a result of Ciucu [4] on the general form of graphical condensation
for Pfaffians.

We give an example of an application of this technique. We will consider graphs on the
square lattice (the nodes are vertices, the sides of the squares are edges). We will denote the
number of matchings in a graph G not only by M(G), but also by the symbol # followed by
the schematic representation of the graph.

Theorem 3.5. Asssume that a 2n × 2m rectangular chip in a graph G has only 4 contacts
which are connected to the corner vertices of the chip. Denote by G′ the graph obtained by the
chip removal and repair (see Fig. 1), with the weights of the new edges equal to

x′ =
#

#
, y′ =

#

#
, w′ =

#

#
, z′ =

#

#
.

Then
M(G) = # · M(G′).

� �

� �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �
AA1 B B1

DD1 C C1

� �

� �
A1 B1

D1 C1

x′ y′

w′

z′

Fig. 1. Removing a 4-contact 2n × 2m chip when counting the number of matchings.

This theorem was proved by the authors in [1] by constructing a bijection. Since the
construction uses Kuo’s method of graphical condensation, it is essential here that the chip
is a planar bipartite graph such that its diagonally opposite corners belong to different parts.
Due to this restriction, the number of matchings in the figure is equal to 0. In terms
of Theorem 3.4, this means that there will be no jumpers A1C1 and B1D1 after the removal
of the chip. As for the remaining part of the graph G, there are no restrictions at all, this
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part may be nonbipartite and may have no Pfaffian orientation. However, if the graph does
have a Pfaffian orientation, then Theorem 3.5 becomes just a corollary of Theorem 3.4 and
formula (4).

4. Examples of the form G×Pm. In the examples, we will use the Fibonacci sequence fn,
where f1 = 1, f2 = 2, and fn+1 = fn + fn−1, and the Pell numbers pn (the sequence A000129
in OEIS):

p1 = 1, p2 = 2, pn+1 = 2pn + pn−1, pn =
√

2
4

((
1 +

√
2

)n − (
1 −

√
2
)n

)
. (5)

Lemma 4.1. (a) Let xn be the sequence given by an initial value x0 and the recurrence

xn+1 = x0 − 1
xn

, n ≥ 0.

Then xn = Un+1(x0/2)
Un(x0/2) , where Un are Chebyshev polynomials of the second kind.

(b) The following equalities hold: fm = (−i)m−1Um−1(i/2), pm = (−i)m−1Um−1(i).
(c) The sequences xn and yn given by the initial conditions x1 = y1 = 1 and recurrences

xn+1 = 1 +
1
xn

, yn+1 = 2 +
1
yn

, n ≥ 0,

can be given by the explicit formulas xn = fn+1/fn, yn = pn+1/pn.

Proof. (a) The Chebyshev polynomials Um satisfy the recurrence

Um+1(x) = 2xUm − Um−1(x), U0 = 1, U1 = 2x. (6)

Since x0 = U1(x0/2)
U0(x0/2) , we immediately obtain the desired formula.

(b) It is easy to see, due to (6), that the sequences (−i)m−1Um−1(i/2), (−i)m−1Um−1(i)
satisfy the recurrences and initial conditions for the Fibonacci and Pell numbers.

(c) Obvious. �

Example 4.1. Let us find the matching numbers of the graphs W4 × Pm−1 and K4 × Pm−1,
where W4 is the 4-cycle with one diagonal and K4 is the complete graph on 4 vertices. Both
graphs are nonbipartite and nonplanar, but they have Pfaffian orientations (see Fig. 2; the same
figure depicts also a Pfaffian orientation of W4×Pm−1 regarded as a subgraph of K4×Pm−1).

Theorem 4.2. (a) The matching number of the graph W4 × Pm−1 equals

M(W4 × Pm−1) = fmpm.

(b) The matching number of the graph K4 × Pm−1 equals

M(K4 × Pm−1) = Um

(i
√

3
2

)
Um

(−i
√

3
2

)
.

The first claim of the theorem was proved in [9]. The sequences in the theorem are A001582
and A005386 from OEIS. For even m, the number |Um

(
i
√
3

2

)| is an integer; for odd m, the
number |√3Um

(
i
√
3

2

)| is an integer. Thus the number M(K4 ×Pm−1) is of the form n2 or 3n2

depending on the parity of m. We will prove the theorem by the chip removal technique.

Proof. We will pick and remove chips step by step: H1 = A1B1C1D1, H2 = A2B2C2D2, etc.
Every chip Hn, n ≥ 2 (with the jumpers installed after removing the previous chip), is the
complete grapf K4. Consider the removal of this chip in detail. Let the weights of the edges
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of the chip and of the next “layer” in the graph be given by Fig. 3 (all unmarked edges have
weight 1). Then after the chip removal, the new weights are given by the formulas

Ã = A +
c

Δ
, B̃ = B +

d

Δ
, C̃ = C +

a

Δ
,

D̃ = D +
b

Δ
, Ẽ = E +

f

Δ
, F̃ = F +

e

Δ
,

(7)

where Δ = ac+ bd+ef = M(H). By the way, the fact that all the signs here are pluses proves
indirectly that the orientation is Pfaffian.

Consider the matrices

K =

⎛

⎜
⎜
⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟
⎟
⎠ , S0 =

⎛

⎜
⎜
⎝

0 a f d
−a 0 b −e
−f −b 0 c
−d e −c 0

⎞

⎟
⎟
⎠ , S−1

0 =
1
Δ

⎛

⎜
⎜
⎝

0 −c −e −b
c 0 −d f
e d 0 −a
b −f −a 0

⎞

⎟
⎟
⎠ .

The matrix K here describes the connections of the external edges and contacts of each of the
chips Hn (Fig. 3). According to the general chip removal scheme, the rule (7) for calculating
the new weights is encoded by the entries of KᵀS−1

0 K as in (3). Since K is a diagonal matrix
with ±1 on the diagonal, the entries of KᵀS−1

0 K have the same absolute values as the entries of
S−1
0 but may have “wrong” signs. This observation allows us to write a reasonable recurrence.

Let

Sn = S0 − S−1
n−1, n ≥ 1; Bn =

{
Sn for even n,
−Kᵀ(Sn)K for odd n.

We claim that Bn = Ã(Hn+1) for n ≥ 0. For n = 0, this is trivial; for n = 1, we have

B1 = −Kᵀ(S1)K = −Kᵀ(S0 − S−1
0 )K = −Kᵀ(S0)K + Kᵀ(S−1

0 )K.

The matrix −Kᵀ(S0)K here is exactly the antisymmetric weight matrix of the layer A2B2C2D2,
and the second matrix Kᵀ(S−1

0 )K determines the positions and weights of the jumpers and
corresponds to the summands in (7) (now the signs of the entries agree with the orientations
of the edges in the layer A2B2C2D2). Thus B1 = Ã(H2).

A1

A2

A3

A4

B1

B2

B3

B4

C1

C2

C3

C4

D1

D2

D3

D4

Fig. 2. A Pfaffian orienta-
tion of K4 × Pn.

A1

A2

B1

B2

a c

b

d

C1

C2

fe

D1

D2

A C

B

D

FE

Fig. 3. The chip removal in the
graph K4 × P2.
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At the next layer A3B3C3D3, the antisymmetric adjacency matrix again equals S0. By the
general chip removal scheme, we obtain

Ã(H3) = S0 + Kᵀ(B−1
1 )K = S0 − (−KᵀB1K)−1 = S0 − S−1

1 = S2 = B2.

Thus, for n = 2 we have B2 = Ã(H3).
The subsequent operations of removing the nth chip proceed similarly to the case n = 1 for

odd n, and to the case n = 2 for even n.
In order to count the number of matchings in the graph M(W4×Pm−1), choose the weights

a = b = c = d = f = 1, e = 0. The matrix S0 given by these weights has the eigen-
values ±i, ±2i. By Lemma 4.1, we have Sn = Un+1(S0/2)Un(S0/2)−1. Then we obtain
detBn = det Sn = detUn+1(S0/2)

detUn(S0/2) and

M(W4 × Pm−1) = Pf(W4 × Pm−1) =
√

det B0 · detB1 · . . . · det Bm−2 =
√

det Um−1(S0/2).

=
√

Um−1(i/2)Um−1(−i/2)Um−1(i)Um−1(−i) = fmpm.

For the graph K4 × Pm−1, we choose the weights a = b = c = d = f = e = 1. The
eigenvalues of S0 are ±i

√
3 with multiplicity 2. Similarly, we have

M(K4 × Pm−1) =
√

detUm−1(S0/2) = Um

(
i
√

3
2

)

Um

(−i
√

3
2

)

. �

Example 4.2. Let us calculate the matching number of the cylinder CN × Pm for even N
and the rectangle P2k × Pm−1. As usual, by Tm(x) and Um(x) we denote the Chebyshev
polynomials of the first and second kind, and by pm we denote the Pell numbers (5).

Lemma 4.3. Let N = 2k be an even number. Consider the matrices

RN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
. . .
0 0 0 . . . 0 1
0 0 0 . . . 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, BN =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0 1
−1 0 1 . . . 0 0
0 −1 0 . . . 0 0
. . .
0 0 0 . . . 0 1
−1 0 0 . . . −1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)

Then
(a) the eigenvalues of the matrix RN are 2 cos π�

N+1 , � = 1, . . . , N ;
(b) the eigenvalues of the matrix BN for N = 4k + 2 are 2i cos 2π�

4k+2 , � = 0, 1, . . . , 4k + 1,
i =

√−1;
(c) the eigenvalues of the matrix BN for N = 4k are 2i cos (2�+1)π

4k , � = 0, 1, . . . , 4k − 1.

Proof. This fact is well known and can easily be checked. The characteristic polynomial of
the matrix BN equals (−1)N/2 · 2TN ( ix

2 ) + 2, which explains the difference between cases (b)
and (c). �

Let

Kk,m =
∣
∣
∣
∣

k∏

�=1

Um−1

(
i cos

π�

2k + 1

)∣
∣
∣
∣.

Below we will see (Theorem 4.7) that Kk,m is an integer.

Theorem 4.4. (a) The matching number of the cylinder C4k+2 × Pm−1 can be represented in
the form

M(C4k+2 × Pm−1) = pmK2
k,m.
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Fig. 4. A Pfaffian orientation of the cylinder C2k × Pn.

(b) The matching number of the cylinder C4k × Pm−1 can be represented in the form

M(C4k × Pm−1) =

(
k−1∏

�=0

Um−1

(
i cos

(2� + 1)π
4k

)
)2

.

(c) The matching number of the rectangle P2k × Pm−1 can be represented in the form

M(P2k × Pm−1) = Kk,m.

Proof. (a), (b) The graph CN × Pm is bipartite; color the vertices of its parts in black and
white. Choose a Pfaffian orientation as in Fig. 4. As in the previous example, we will remove
chips Hn step by step, each of them being a cycle CN together with the jumpers obtained at the
previous step. The first chip H0 is a cycle CN at the edge of the cylinder. The antisymmetric
adjacency matrix of the N -cycle is given by (8):

A0 = Ã(CN ) = BN ;

let An = Ã(Hn) be the antisymmetric adjacency matrix of the next chip, which is a graph on
N vertices located at the edge of the cylinder after n steps.

Consider the chip Hn in detail. The weights of its edges “consist of” the unit weights of the
edges of the N -cycle and the weights of the jumpers obtained by the removal of the previous
chip (for uniformity, we may assume that for n = 0 the jumpers have zero weight). The jumpers
are diagonal edges that join vertices of different color (this can be proved by induction, due to
formula (4): if the contacts vjr , vjs are of the same color, then the numerator in the right-hand
side vanishes).

The graph under consideration has two specific properties: 1) it is bipartite; 2) all contact
edges are directed from a black vertex to a white one (or from a white vertex to a black one,
depending on the parity of n), which means that half of the contact edges are directed towards
the chip, and another half are directed from the chip. Due to this fact, the jumper matrix
KᵀÃ(Hn)−1K in formula (3) equals −Ã(Hn)−1. Indeed, let us first number all black vertices
in the chip, and then all white vertices, and similarly for the contacts. Then the matrix Ã(Hn)
has the block form

(
0 Xn

−Xn 0

)
, and K =

(
0 ±E

∓E 0

)
. Comparing the product KᵀÃ(Hn)−1K

with the initial matrix Ã(Hn)−1, we see that all nonzero entries have changed their sign.
Thus, by formula (3), we have

An+1 = A0 − A−1
n . (9)

By Lemma 4.1, we obtain
An = Un(A0/2)Un−1(A0/2)−1.
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Hence
det Ã(CN × Pm−1) = det A0 · det A2 · . . . · detAm−1 = det Um−1(A0/2).

We will transform this expression applying Lemma 4.3; the result depends on the parity
of N/2.

For N = 4k + 2, the eigenvalues of A0 are 2i cos 2π�
4k+2 , � = 0, 1, . . . , 4k + 1. Each cosine

appears twice in this list, except for cos 2π0
4k+2 = 1 and cos 2π(2k+1)

4k+2 = −1; we may think that
the latter two form a pair, since Um−1 is an even (or odd) function. The determinant is the
product of the eigenvalues, therefore,

M(C4k+2 × Pm−1) =
√

det Ã(C4k+2 × Pm−1) = (−i)m−1
2k∏

�=0

Um−1

(
i cos

π�

2k + 1

)

= (−i)m−1Um−1(i)

(
2k∏

�=1

Um−1

(

i cos
π�

2k + 1

))

= pmK2
k,m.

For N = 4k, the eigenvalues of A0 are 2i cos (2�+1)π
4k , � = 0, 1, . . . , 4k − 1. And we have the

analogous formula

M(C4k × Pm−1) =
√

det Ã(C4k × Pm−1)

=
2k−1∏

�=0

Um−1

(
i cos

(2� + 1)π
4k

)
=

(
k−1∏

�=0

Um−1

(
i cos

(2� + 1)π
4k

)
)2

.

Below we will check that this number is a perfect square for even m, and twice a perfect square
for odd m.

(c) Observe that if we consider the standard Pfaffian orientation of the rectangle, and choose
Hn to be the path P2k (plus jumpers) at the edge of the rectangle, then the recurrence (9)
is valid for rectangles, too. The eigenvalues of A0 = Ã(P2k) are 2i cos π�

2k+1 , � = 1, 2, . . . , 2k.
Taking into account that Um−1 is an even/odd function, we have

M(P2k × Pm−1) =
√

det Ã(P2k × Pm−1) =

∣
∣
∣
∣
∣

k∏

�=1

Um−1

(
i cos

π�

2k + 1

)
∣
∣
∣
∣
∣
= Kk,m. �

Comparing assertions (a) and (c) of the theorem, we obtain a corollary.

Corollary 4.4.1. M(C4k+2 × Pm−1) = pmM(P2k × Pm−1)2.

In particular, for k = 1, due to Lemma 4.1(b), we have M(C6 ×Pm−1) = f2
mpm. This is the

sequence A028477 in OEIS, its generating function is calculated in [8].
Now we will factor the numbers M(P2k × Pm−1) and M(C4k × Pm−1) into integers, which,

however, are neither prime nor even coprime.
Recall that the cyclotomic polynomial Φk is the polynomial whose roots are the primitive

kth roots of 1. It is known that the polynomials Φk have integer coefficients. The next lemma
contains known technical assertions, the keyword here is “the minimal polynomial for cos π

k .”
We have not found a good reference, so give a proof here.

Lemma 4.5. Let k be an arbitrary nonnegative integer. Then
(a) for every nonnegative integer a, the sum

∑

1≤j≤�k
2
�,

(j,k)=1

22a cos2a( jπ
k ) is an integer;
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(b)
∣
∣
∣
∣

∏

1≤j≤k,
(j,2k+1)=1

2 cos jπ
2k+1

∣
∣
∣
∣ = 1; (c)

k−1∏

j=0
2 cos (2j+1)π

4k =
√

2.

Proof. (a) Using Euler’s formula for the cosine, we can rewrite the formula as follows:
∑

1≤j≤�k
2
�,

(j,k)=1

22a cos2a
(jπ

k

)
=

∑

j

(ei jπ
k + e−i jπ

k )2a

=
∑

j

2a∑

m=0

(
2a
m

)

ei (2a−2m)jπ
k =

∑

m

(
2a
m

) ∑

1≤j≤�k
2
�,

(j,k)=1

ei (a−m)2jπ
k .

The last sum over j is an integer; indeed, if (a−m,k) = 1, then this is the sum of all primitive
kth roots of 1, which is equal to some coefficient of Φk; and if (a − m,k) = d > 1, then the
sum contains all primitive (k/d)th roots of 1 with multiplicity d.

(b) Observe that
∣
∣
∣
2k∏

j=1
2 cos jπ

2k+1

∣
∣
∣ = 1, because this is the constant term of the polynomial

U2k(x/2). All the cosines in this product form pairs such that in each pair the cosines differ

only by the sign; therefore,
k∏

j=1
2 cos jπ

2k+1 = 1. Denote this product by Q(2k + 1) and the

product from the statement of the lemma by P (2k + 1). Then for all k,

1 = Q(2k + 1) =
k∏

j=1

2 cos
jπ

2k + 1
=

∏

d|(2k+1)

∏

1≤j≤k,
(j,2k+1)=d

2 cos
jπ

2k + 1
=

∏

d|(2k+1)

P
(
2k+1

d

)
.

Now we can obtain an expression for P (2k+1) by the inclusion–exclusion principle: P (2k+1) =
∏

d|(2k+1)

Q
(
2k+1

d

)μ(d) = 1, where μ(d) = 0,±1 is the Möbius function.

(c) Observe that
k−1∏

j=1
cos jπ

2k ·
2k−1∏

j=k+1

cos jπ
2k is the product of all roots of the polynomial U2k−1

except 0; therefore, by the Viète theorem, this product equals ±k (the coefficient of x in
U2k−1). Then

k−1∏

j=0

2 cos
(2j + 1)π

4k
=

2k−1∏

j=1
2 cos jπ

4k

k−1∏

j=1
2 cos jπ

2k

=

√
√
√
√
√
√
√
√

∣
∣
∣
∣
∣
∣
∣
∣
∣

2k−1∏

j=1
cos jπ

4k ·
4k−1∏

j=2k+1

cos jπ
4k

k−1∏

j=1
cos jπ

2k ·
2k−1∏

j=k+1

cos jπ
2k

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

√
2k
k

=
√

2. �

Lemma 4.6. (a) Let x1, . . . , xn be real numbers such that for every nonnegative integer k,

the sum
n∑

j=1
xk

j is an integer. Then for any nonnegative m and any ordered set (a1, . . . , am)

of nonnegative integers, the sum
∑

(j1,...,jm)

m∏

k=1

xak
jk

is an integer (the sum runs over all possible

ordered sets of m different numbers j1, . . . , jm ∈ {1, . . . ,m}).
(b) Let x1, . . . , xn be real numbers such that for every nonnegative integer k, the sum

n∑

i=1
x2k

i

is an integer, and let P be a polynomial with integer coefficients. Then the following holds. If
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P is an even function, then the product
n∏

i=1
P (xi) is an integer; if P is an odd function, then

the product
n∏

i=1

P (xi)
xi

is an integer.

The first claim can be proved by induction on m. The second claim follows from the first
one.

Theorem 4.7. The following decompositions hold, the value of the product corresponding to
every h being an integer for each of them:

M(P2k × Pm−1) =
∏

h|2k+1

∣
∣
∣
∣
∣
∣
∣
∣

∏

1≤j≤k,
(j,2k+1)=h

Um−1

(

i cos
jπ

2k + 1

)
∣
∣
∣
∣
∣
∣
∣
∣

, (10)

M(C4k × P2m) =

⎛

⎜
⎜
⎝

∏

h|k

∣
∣
∣
∣
∣
∣
∣
∣

∏

0≤j≤k−1,
(2j+1,k)=h

U2m

(

i cos
(2j + 1)π

4k

)
∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎠

2

,

M(C4k × P2m−1) = 2

⎛

⎜
⎜
⎝

∏

h|k

∣
∣
∣
∣
∣
∣
∣
∣

∏

0≤j≤k−1,
(2j+1,k)=h

U2m−1

(
i cos (2j+1)π

4k

)

2i cos (2j+1)π
4k

∣
∣
∣
∣
∣
∣
∣
∣

⎞

⎟
⎟
⎠

2

.

Proof. Let us prove formula (10).
For odd m, the polynomial Um−1(x/2) has integer coefficients and is an even function. For

every nonnegative integer a and any divisor h|(2k + 1), the following equality holds:

∑

1≤j≤k,
(j,2k+1)=h

(

2i cos
jπ

2k + 1

)2a

= ±
∑

1≤j≤� k̃
2
�,

(j,k̃)=1

22a
(

cos
jπ

k̃

)2a

,

where k̃ = 2k+1
h . By Lemma 4.5(a), the sum in the right-hand side is an integer. Then, by

Lemma 4.6(b), each product over j in formula (10) is an integer.
For even m, the polynomial Um−1(x/2) has integer coefficients and is an odd function.

As in the previous paragraph, we obtain by Lemmas 4.5(a) and 4.6(b) that the product
∏

1≤j≤k,
(j,2k+1)=h

Um−1

(
i cos jπ

2k+1

)

2i cos jπ
2k+1

is an integer. It remains to observe that the product of the denomi-

nators equals 1 by Lemma 4.5(b).
The two other formulas can be proved analogously; the factor 2 appears in the last formula

due to Lemma 4.5(c). �

From this theorem we can immediately obtain Sellers’ [9] observation that the number
M(P8 ×Pm−1) is divisible by fm. Indeed, for k ≡ 1 (mod 3), the factor in (10) corresponding
to h = (2k + 1)/3 is the Fibonacci number fm = |Um−1(i/2)|.

The decompositions in the theorem are far from being decompositions into primes or at least
coprime integers. For example, M(P8 × P8) = 12988816 = 24 · 172 · 532 (see [10]). Applying
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assertion (a) of the theorem for k = 4, m = 9, we have for h = 1
∏

1≤j≤k,
(j,2k+1)=h

Um−1

(

i cos
jπ

2k + 1

)

= U8

(

i cos
π

9

)

·U8

(

i cos
2π
9

)

·U8

(

i cos
4π
9

)

= 382024= 23 ·17·532,

and for h = 3
∏

1≤j≤k,
(j,2k+1)=h

Um−1

(

i cos
jπ

2k + 1

)

= U8

(

i cos
π

3

)

= 34 = 2 · 17.

5. Examples on the hexagonal lattice

Definition. A hexagonal a× b parallelogram is a figure on the hexagonal lattice consisting of
b rows of a hexagons each, where every next row is shifted half the width of the hexagon to
the right with respect to the previous row, see Fig. 5. Denote by Ba,b the graph whose vertices
are the nodes of the parallelogram and edges are the lines of the hexagonal lattice.

Fig. 5. The hexagonal parallelogram B6,4.

The following theorem was proved in [5]. We suggest a proof by means of the chip removal
technique.

Theorem 5.1. The number of matchings in the hexagonal parallelogram Ba,b equals
(a+b

a

)
.

Proof. Fix a Pfaffian orientation of the graph Ba,b as in Fig. 5. Assume that the edges of the
initial graph have weight 1. We will successively remove chips.

Let the first chip H1 be the upper “horizontal” layer consisting of 2a + 2 vertices (in the
figure below, the dotted line cuts off the chip, the contacts are numbered). It is easy to see
that after the chip removal all the jumpers “share” the vertex a + 1. Indeed, if we remove
two vertices of the chip connected with the ith and jth contacts (i, j < a + 1), then the chip
splits into two odd components and has no matchings, so that the weight of the corresponding
jumper equals 0. Note that the jumper (a+1) → 1 is not shown in the figure, we assume that
its weight is just added to the existing edge.

123a
a + 1

H1

123a
a + 1

After the removal of each next chip Hk, we have a similar picture: the jumpers share the
rightmost vertex (Fig. 6). Let us calculate the weights of the jumpers after the removal of the
chip Hk. Number the vertices of the two consecutive layers as in Fig. 6. Let the weights of
the jumpers of the previous chip be equal to w1,a+1, w2,a+1, . . . , wa,a+1, and the orientation
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of the jumpers be “hidden” in the signs of the weights.

Hk

a a−1 2 1

a+12a+1 2a a+3 a+2

2a+23a+2 3a+1 2a+4 2a+3

3a+3

3a+2 3a+1 2a+4 2a+3

3a+3

Fig. 6. Removing the chip Hk in the graph Ba,b.

Since the chip Hk has a unique perfect matching,

Pf(Hk) = sgn(1, a+2, 2, a+3, . . . , a, 2a+1, a+1, 2a+2) ·w1,a+2w2,a+3 · · ·wa,2a+1wa+1,2a+2

= (−1)
a(a+1)

2 · 1 · 1 · . . . · 1 · (−1) = (−1)
a(a+1)

2
+1. (11)

Denote by W2a+2+i,3a+3 the weight of the jumper that joins the contacts 2a+2+ i and 3a+3.
Note that for i = 1, this jumper is added to the existing edge; in this case, we will use the
Kronecker symbol δi1. In order to calculate the weight W2a+2+i,3a+3 by formula (4), we should
remove from the chip the second endpoints of the contact edges, i.e., the external vertices
a + 1 + i and 2a + 2, and calculate the Pfaffian of the remaining part of the chip:

W2a+2+i,3a+3

= δi1 + (−1)(a+1+i)+(2a+2) · wa+1+i,2a+2+i · w2a+2,3a+3 · Pf(Hk \ {a + 1 + i, 2a + 2})
Pf(Hk)

= δi1 + (−1)a+1+ a(a+1)
2

+i · Pf(Hk \ {a + 1 + i, 2a + 2}).
It remains to calculate the Pfaffian Hk \ {a + 1 + i, 2a + 2}. The matchings in this graph are
uniquely determined by the “arc” edge (j, a + 1). Hence

Pf(Hk \ {a + 1 + i, 2a + 2})

=
i∑

j=1

sgn(1, a+2, . . . , j−1, a+j, j, a+1, j+1, a+j+1, . . . , i, a+i, i+1, a+i+2, . . . , a, 2a+1)
×w1,a+2 · . . . · wa,2a+1

=
i∑

j=1

(−1)
a(a−1)

2
−(j−1)wj,a+1. (12)
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a a−1 2 1

a + 1a + 2a + 32a − 12a

Hfin

Fig. 7. The result of
removing the chip Hb

in the graph Ba,b.
Fig. 8. Arnold’s snake
of order 5.

Combining the two previous formulas, we obtain

W2a+2+i,3a+3 = δi1 + (−1)i−1 ·
i∑

j=1

(−1)j−1wj,a+1.

Let us change the notation: let Ak−1,j = (−1)j−1wj,a+1, j = 1, 2, . . . , a. In particular,
A0,1 = 1, A0,2 = A0,3 = . . . = A0,a = 0 (these equalities mean that the chip H1 has no
jumpers). In the same terms, W2a+2+i,3a+3 = (−1)i−1Ak,i, and we can rewrite the obtained
equality in the form

Ak,i = δi1 +
i∑

j=1

Ak−1,j.

It is not hard to see that the following sequence solves this recurrence:

Ak,j =
(

k + j − 1
j

)

for j > 1; Ak,1 =
(

k

1

)

+ 1.

After b chip removal operations, almost the whole graph is removed and we obtain the graph
Hfin (see Fig. 7); its Pfaffian Pf(Hfin) can be calculated similarly to (12):

Pf(Hfin) = (−1)
a(a−1)

2

a∑

i=1

(−1)i−1wi,a+1 (13)

= (−1)
a(a−1)

2

a∑

i=1

Ab,i = (−1)
a(a−1)

2

a∑

i=1

(
b + i − 1

i

)

= (−1)
a(a−1)

2

(
b + a

a

)

. (14)

Thus M(Ba,b) =
∣
∣Pf(H1) · Pf(H2) · . . . · Pf(Hb) · Pf(Hfin)

∣
∣ =

(b+a
a

)
. �

Definition. Consider the figure on the hexagonal lattice consisting of n(n+1)
2 hexagons ar-

ranged in n rows such that the ith row contains i hexagons and the rows are shifted to the
left or the right as shown in Fig. 8. We will call this figure, as well as the graph Sn formed by
the nodes and line segments in it, Arnold’s snake of order n.

Recall the construction of the Euler–Bernoulli triangle (see [2]). This triangle looks like the
Pascal triangle. The top vertex of the triangle (this is the 0th row) contains 1. Every element t
in an odd row equals the sum of the elements in the previous row to the left of t, and every
element t in an even row equals the sum of the elements in the previous row to the right of t.
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Let us number the elements from left to right in odd rows, and from right to left in even rows:

1
0 1

1 1 0
0 1 2 2

5 5 4 2 0
0 5 10 14 16 16

t00
t10 t11

t22 t21 t20
t30 t31 t32 t33

. . .

. . .

(15)

With this numbering, the recurrence for the Euler–Bernoulli triangle takes the form

tn,0 = 0, tn,i =
n−1∑

j=n−i

tn−1,j.

The sequence {tn,n}n≥1, that starts as 1, 1, 2, 5, 16, . . . , is called the Euler–Bernoulli sequence.
The nonzero numbers En = t2n,2n at the left side of the triangle are the Euler numbers,
∑ En

(2n)! t
2n = sec t; and the nonzero numbers Tn = t2n−1,2n−1 at the right side are the tangent

numbers,
∑ Tn

(2n−1)! t
2n−1 = tan t.

Theorem 5.2. The matching number of Arnold’s snake of order n equals the (n+2)th Euler–
Bernoilli number tn+2n+2.

12k
k+1k+22k2k+1

2k+2 2k+3 3k+2 3k+3

3k+4

2k+3 2k+4 3k+2 3k+3

3k+4 3k+5

Fig. 9. Removing the chip Hk in Arnold’s snake.

Proof. We will remove chips from top to bottom, each chip containing all vertices of one
horizontal layer. As in the proof of the previous theorem, after the chip removal the new
jumpers share the leftmost (as in Fig. 9) or the rightmost (as in the figure below) vertex of
the chip, depending on the parity of the number of the chip.

123456 123456

Let us number the vertices of the graph in such a way that for vertices on the same horizontal
layer the directions of numbering interchange: two layers are numbered from left to right, then
two layers are numbered from right to left, etc. (see Fig. 9). Consider the operation of
removing the chip Hk. We may assume that the numbering starts from 1. Let the weights of
the jumpers in the previous chip be equal to w1,k+1, w2,k+1, . . . , wk−1,k+1, and the orientation
of the jumpers be “hidden” in the signs of the weights. For uniformity, we assume that the
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edge k → (k + 1) is present and w1,k+1 = 0. The edges of the initial graph have weight 1. Let
us calculate the weights of the new jumpers W2k+2+i,3k+4.

First, calculate the Pfaffian of Hk. The matchings of Hk are uniquely determined by the
edge j → (k + 1):

Pf(Hk)=
k−1∑

i=1

sgn(1, k+2, 2, k+3, . . . , i−1, k+i, i, k+1, i+1, k+i+1, . . . , k, 2k, 2k+1, 2k+2)
×w1,k+2 · . . . · wi−1,k+i · wi,k+1 · wi+1,k+i+1 · . . . · w2k+1,2k+2

=
k−1∑

i=1

(−1)
k(k−1)

2
−i · wi,k+1.

Second, calculate the Pfaffian of the chip with the removed external vertices of the edges
(2k + 2) → (3k + 4) and (2k + 2 + i) → (2k + 1 − i). For i < k, a matching in the graph
Hk \ {2k + 1− i, 2k + 2} is uniquely determined by the edge j → (k + 1), where i ≤ j ≤ k; and
for i = k, there exists only one matching. Analogously to (11), (12), we obtain for i < k,

Pf(Hk \ {2k + 1 − i, 2k + 2})
k−1∑

j=i

(−1)
k(k−1)

2
−(j−1) · wj,k+1;

and for i = k,

Pf(Hk \ {k + 1, 2k + 2}) = (−1)
k(k−1)

2 .

Now use formula (4) to find the weight W2a+2+i,3a+3 which corresponds to the contact edges
(2k + 1 − i) → (2k + 2 + i) and (2k + 2) → (3k + 4). For i < k,

W2k+2+i,3k+4

= δi1 + (−1)(2k+1−i)+(2k+2) · w2k+1−i,2k+2+i · w2k+2,3k+4 · Pf(Hk \ {2k + 1 − i, 2k + 2})
Pf(Hk)

= δi1 + (−1)i+1 ·

k−1∑

j=i
(−1)j+1wj,k+1

k−1∑

j=1
(−1)j+1wj,k+1

.

Similarly, for i = k we have

W3k+2,3k+4 = (−1)k+1 1
k−1∑

j=1
(−1)j+1 · wj,k+1

.

It remains to calculate the Pfaffian of the graph obtained after the removal of the chip Hn.
As in the previous theorem, it is given by formula (13) (see. Fig. 7):

Pf(Hn+1) = (−1)
k(k−1)

2

k∑

i=1

(−1)i+1 · wi,k+1.

Let us change the notation: let Ak−1,j = (−1)j+1wj,k+1, j = 1, 2, . . . , k. In particular,
A0,1 = 1 = δ11 (these equalities mean that the chip H1 has no jumpers). In this notation,
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W2k+2+i,3k+4 = (−1)i+1Ak,i, and we can rewrite the obtained recurrence in the form

Ak,i = δi1 +

k−1∑

j=i
Ak−1,j

k−1∑

j=1
Ak−1,j

, i < k; Ak,k =
1

k−1∑

j=1
Ak−1,j

.

It is not hard to check that the following weights solve this recurrence:

Ak−1,i =
tk,k−i

tk,k
for i > 1, Ak−1,1 = 2 =

2tk,k−1

tk,k
=

tk,k−1 + tk,k

tk,k
.

Therefore, Pf(Hk) = tk+1,k+1

tk,k
for n ≥ k > 1,

Pf(H1) = 1 =
t2,2
t1,1

Pf(Hn+1) = (−1)
k(k−1)

2
tn+2,n+2

tn+1,n+1
.

Then the matching number of Arnold’s snake of order n equals
∣
∣Pf(H1) · Pf(H2) · . . . · Pf(Hn) · Pf(Hn+1)

∣
∣ =

t2,2
t1,1

· t3,3
t2,2

· . . . · tn1,n+1

tn,n
· tn+2,n+2

tn+1,n+1

=
tn+2,n+2

t1,1
= tn+2,n+2. �

Translated by the authors.
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