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CALCULATION OF PFAFFIANS BY A CHIP REMOVAL
V. E. Aksenov* and K. P. Kokhas' UDC 519.148, 519.177.3

We describe a new combinatorial-algebraic transformation on graphs which we call “chip removal.”
It generalizes the well-known Urban Renewal trick of Propp and Kuperberq. The chip removal is
useful in calculations of determinants of adjacency matrices and matching numbers of graphs. A
beautiful example of this technique is a theorem on removing four-contact chips, which generalizes
Kuo’s graphical condensation method. Numerous examples are given. Bibliography: 10 titles.

1. Introduction. Let G be an arbitrary (undirected) graph. Consider an arbitrary orien-
tation of its edges. In this paper, we suggest a combinatorial technique for calculating the
Pfaffian Pf(G), which generalizes the “Urban Renewal” trick of Kuperberg and Propp for
counting the number of matchings in a graph and the chip removal technique developed by
the authors in [1]. Both approaches are special cases of the diagonalization of block matrices,
and they have a very transparent combinatorial interpretation.

We calculate the Pfaffian Pf(G) by means of a special operation, the chip removal. By a
chip H we mean an arbitrary induced subgraph of G with an even number of vertices. A
vertex of a chip that has an outgoing edge (i.e., an edge whose second endpoint lies outside H)
will be called external, and the second endpoint of an external edge will be called a contact.
The chip removal operation consists of two steps: 1) we remove the chip H and all its external
edges from the graph, and 2) after that, we “repair” the remaining part of the graph by joining
some contacts with new weighted edges which we call jumpers. The location and weights of
the jumpers depend on the chip. Denote by G’ the graph obtained by this operation. The
main property of the chip removal is that

Pf(G) = P(H) P£(G").

In Sec. 2, we give necessary background on Pfaffians and describe the general scheme of chip
removal in terms of the antisymmetric adjacency matrix of the graph. In Sec. 3, we describe
the chip removal operation in terms of Pfaffians. In Sec. 4, we give examples of counting the
number of matchings in graphs of the form G x P, by means of the chip removal technique.
As a corollary, we obtain an assertion on the number of matchings in a rectangle. In Sec. 5,
we apply this technique to count the number of matchings in graphs on the hexagonal lattice
and describe the remarkable “Arnold’s snakes,” graphs for which the numbers of matchings
are the Euler-Bernoulli numbers.

2. The general scheme of chip removal. We need to consider the technical details of the
definition of the Pfaffian. Below is a collection of known facts and definitions; for details, see
Fulmek’s article [6].

1. Let W = (wjj)1<i<j<on be a given triangular array of numbers. Let

w={(i1,i2), ..., (ian_1,%20)}

be an arbitrary matching (= splitting into pairs) of the set {1,2,...,2n} (in each pair, the
smaller number should be written first). Then the sign sgn(u) is, by definition, the sign of
the permutation (i1igigiy . ..%2,—1%92,), the weigth w(u) of M is given by the formula w(u) =

*ITMO University, St.Petersburg, Russia.
St.Petersburg State University; ITMO University, St.Petersburg, Russia, e-mail: kpk@arbital.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 436, 2015, pp. 5-33. Original article sub-
mitted September 12, 2015.
1072-3374/16/2156-0631 (C)2016 Springer Science+Business Media New York 631



Wiy igWig iy - - - Wigy, 1 ion» and the Pfaffian PfW is equal to PfW = " sgn(u)w(p), where the

summation runs over all matchings p of the set {1,2,...,2n}.
2. In the above definition, we can replace the set {1,2,...,2n} by an arbitrary ordered set
with an even number of elements. Let u = {(i1,42), ..., (i2n—1,%2,)} be an arbitrary matching

of the set {1,2,...,2n}, and let y/ be the matching obtained from p by removing one pair
(ig,ik41) with the subsequent shift of indices. Then sgn p = (—1)%*Fé+1+1 gon 1/,

3. Now let G be an arbitrary weighted graph with an even number of vertices, indexed by
1,2,...,2n. Denote by ng the weight of an edge (v;,v;). We may think that G is the complete
graph on 2n vertices with some edges having weight 0. Choose an arbitrary orientation of the
edges of G and consider the corresponding antisymmetric adjacency matrix A(G) = (wj;).
Thus we have w;; = :l:w;j depending on the orientation of the edge v;v;. Take the upper

triangular part of the matrix A(G) as an array W. By definition, Pf(G) = Pf A(G) = PfW.
4. The following formula (Cayley’s theorem) holds:

det A(G) = (Pf A(G))?. (1)

This can be proved by constructing a bijection between the summands of the form
Sgn(0) * 1 (1)X2,5(2) - - - Q2p,o(2n) IN the definition of the determinant and the pairs of match-
ings sgn(u)w(p) sgn(v)w(v) appearing in the right-hand side when we write Pfaffians as sums
and remove the parentheses. When constructing this bijection, we may assume that the factor
Q; 5(iy corresponds to the first Pfaffian.

Due to Cayley’s formula (1), the calculation of the Pfaffian reduces to the calculation of the
determinant of the adjacency matrix. We will adapt the chip removal technique for calculating
determinants developed by the authors in [1] to calculating Pfaffians.

For a given graph G, a chip is an arbitrary induced subgraph of G with an even number of
vertices. A vertex of the chip that has an outgoing edge (i.e., an edge whose second endpoint
lies outside H) will be called external, and the second endpoint of an external edge will be
called a contact.

Consider an arbitrary orientation of the edges of the graph G. A typical example is a
Pfaffian orientation. Denote by A(G) the antisymmetric adjacency matrix of the graph G.
Let a chip H contain h vertices and have k contacts. Then the matrix A(G) has a block form:

B AH) K 0
AG)=|-KT L x|, (2)
0 * %

where K is an h x k block that encodes the connections of the chip to the contacts, L is a
(possibly zero) k x k block that encodes the edges of the graph G between the contacts, and

the stars correspond to other possible edges outside of the chip. Multiplying the matrix E(G)

E 00
by D = <K TAH)L E 0 > does not change the determinant, hence

0 0E

N N AH) K 0 N 7

det A(G)=detD-A(G)=det | 0 L x| =detA(H)-det <* :) ,
0 x ok
where
L=L+KTAH)'K. (3)

We interpret the changes in the block L as a “repair,” or “installation of jumpers,” i.e.,
creating additional edges between contacts. The weights of these edges are specified in the
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matrix —KTﬁ(H)_lK. Denote the graph obtained by the repair by G’. The matrix (E :) is
exactly the antisymmetric adjacency matrix of the repaired graph Z(G’ ). Thus

det A(G) = det A(H) - det A(G'),
and, by Cayley’s theorem,
Pf A(G) = £ Pf A(H) - Pf A(G').

3. Applications to calculating Pfaffians and matching numbers. In this section, we
describe the weights of the jumpers installed during the chip removal operation in combinatorial
terms (Theorem 3.4).

Let G be an arbitrary graph with an even number of vertices. In particular, we do not
assume that G is bipartite. Consider an arbitrary orientation of the edges of G, and let A(G)
be the antisymmetric adjacency matrix corresponding to this orientation. Assume that the
vertices of G are numbered and denote by aj, the entries of the matrix A(G) according to
this numbering. Denote by G;; the directed graph obtained from G by removing the vertices
v; and v;; and by éij, the graph obtained from G by removing all outgoing edges of the ith
vertex and all ingoing edges of the jth vertex. Let g@j be the matrix obtained from K(G) by
deleting the ith row and jth column.

Lemma 3.1. |det A;;| = | Pf A(G) Pf A(Gy;)|.

Proof. Denote by g@jji the matrix obtained from K(G) by deleting the ith and jth rows and
the ith and jth columns. Apply the Dodgson condensation formula for determinants:

det K(G) det Avijji = det Avm det gjj — det Avij det AVJZ

Here det g@j = —det ﬁji since the matrix E(G) is antisymmetric; and det A;; = det ij =0
since these are antisymmetric matrices of odd order. Expressing the determinants in the
left-hand side by formula (1), we obtain the desired equality. O

In the following theorem, we remove the absolute value signs in the assertion of Lemma 3.1.
Theorem 3.2. For i < j, we have det ﬁij — —PfA(G) Pf /T(G”)
Proof. Write the determinant det g@j in the form

(1) o det Ay =Y " sgn(0) 01 5(1)02,0(2) - - - V2,020

where the sum runs over the elements of the symmetric group Ss,, for which (i) = j (so each
summand in the right-hand side contains the factor c;;). Using the bijection from the proof
of Cayley’s theorem, we can rewrite the sum in the form

Z Sgn(“)al,a(l)azg@) <o Qo g(2n) = Z (sgn(u) - w(p)) - (sgn(v) - w(v)),
o v
where the sum runs over pairs of matchings and we may assume that in the right-hand side
the factor «;; in each summand corresponds to an edge v;v; that belongs to the matching .
Denote by p’ the matching of the graph Gj;; obtained by removing the edge v;v; from p. It
is clear that every matching of G;; can be obtained in this way from an appropriate (and
uniquely determined) matching p and sgn pu = (—1)""/*1sgn i//. Then

> (sen(p) - w(n)) - (sgn(v) - w(r)) = Y (=1 ay;(sgn(u)w(i')) - (sgn(v) - w(v)).
lu"V MI7V
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Thus o B
(=1 ag;det Ay = (1) a Z (sgn(p ) - (sgn(v) - w(v)).
w,
Canceling (—1)"*/ ;; finishes the proof. O

Theorem 3.3. Let B = (b;j) = A(G)™! and Pf A(G) # 0. Then the matriz B is antisymmet-
ric and for i < j,

by = (— )i+ PfA(G )
PfA(G)
Proof. We have det ﬁij = —det gj@, because the matrices are antisymmetric. Then, by
Kramer’s formulas and Theorem 3.2,
bij _ (_1)7;_,’_]- detflji :( 1)Z+] PfA(Gli) PfA(G) _( 1)Z+] PfA(G )
det A(G) (Pf A(G))? Pf A(G)

Remark. It is well known that if v; and v; are adjacent vertices in a planar bipartite graph,
then the absolute value of the entry b;; of the inverse Kasteleyn matrix is equal to the proba-
bility that the random matching contains the domino v;v; (see [7]). This assertion is a special
case of Theorem 3.3.

Now we can describe the chip removal technique in terms of Pfaffians. Assume for simplicity
that every external vertex of the chip is joined with one contact only. Besides, we assume that
the vertices of the graph are numbered in such a way that the numbers of all vertices of the
chip are smaller than the numbers of all other vertices of the graph.

Theorem 3.4. Let v, v;,,...,v;, be the external vertices of the chip H and vj,,vj,, ...,V

be the corresponding contacts. Let Pf K(G) # 0. For i, < is, define the weight of the new
Jumper between the vertices vj, and v;, by the formula

PfA(H \ {Uz‘r,vz‘s})_

Pf A(H) @

w(vj,v5,) = (=1)" w4, wi,j,

Then the following equalities hold:
det(A(Q)) = det(A(H)) - det(A(G')) and PE(A(Q)) = PE(A(H)) - PE(A(G)).

Observe that formula (4), in fact, determines the entry A(G’ )jr.js Of the antisymmetric

matrix Z(G’ ). Therefore, this formula determines the orientation of the new jumpers (though
this orientation depends on whether we want the weight to be positive or not).

Proof. The claim follows from the general chip removal scheme (3). Write the matrix A(G) in
the block form (2), let (b;;) = A(H)™'. Since i, < j,, the entry @i, is in the block KT and
equals —wj, ;.. The weight of the jumper calculated by formula (3) equals wj, j, w;,;,b;.i,. Now
we can calculate b; ;, by Theorem 3.3 and use formula (1). The formula for determinants is
proved.

Due to Cayley’s formula (1), we can take the square root and obtain

Pf(A(G)) = £ PE(A(H)) - PE(A(G)).

Let us check that the correct sign here is the “plus” sign. Consider an arbitrary matching of G
that is the union of a matching of H and a matching of the remaining graph G\ H. Assign
a large positive weight to each edge of this matching (this weight should be greater than the
number of matchings in G), and let the other edges of the graph have weight 1. It suffices to
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check that the contributions of this matching to both sides of the equality under consideration
have the same sign.

Assume that the matching contains edges (i1,i2), ..., (iok_1,i2r) of the chip H and edges
(415J2)s - -+ (42m—1, J2m) of the remaining part of the graph. We have i, < j, for all p and ¢, by
the restriction on the numbering of the vertices. The sign of each summand in the definition
of the Pfaffian Pf A(H) is the product of the sign of the permutation (1,72, ..., %1, i2k)
and the signs of the edges imposed by the orientation. The product of the latter signs equals
(—=1)*") | where s(H) is the number of edges whose starting point has a greater number than
the endpoint. The analogous rule works for the other two Pfaffians. But it is clear that

sgn(in, iz, .- yiog—1,42k) - (—1)°ID - sgn(ji, jo, . . ., Jam—1, d2m) - (—1)5 (D

= 5gn(i1, 9, - -+, i2k—1, 19k» J1, 525 - - > J2m—1G2m) - (—1)*(),

and the assertion follows. O

Remark. In the case where the graph G has a Pfaffian orientation (it is a Pfaffian orientation
for the chip, too), we have

M(G) = £M(H)Pf(G).
This equality generalizes a result of Ciucu [4] on the general form of graphical condensation
for Pfaffians.

We give an example of an application of this technique. We will consider graphs on the
square lattice (the nodes are vertices, the sides of the squares are edges). We will denote the
number of matchings in a graph G not only by M(G), but also by the symbol # followed by
the schematic representation of the graph.

Theorem 3.5. Asssume that a 2n x 2m rectangular chip in a graph G has only 4 contacts
which are connected to the corner vertices of the chip. Denote by G’ the graph obtained by the
chip removal and repair (see Fig. 1), with the weights of the new edges equal to

CER L ER R iR
dEE T EE EE R
M(G) = #ﬁ - M(G").

Then

1 B Aq P B
o o o 0
! /
€z Yy
w/
o) o) o) o
D D 1 D, 1

Fig. 1. Removing a 4-contact 2n x 2m chip when counting the number of matchings.

This theorem was proved by the authors in [1] by constructing a bijection. Since the
construction uses Kuo’s method of graphical condensation, it is essential here that the chip
is a planar bipartite graph such that its diagonally opposite corners belong to different parts.
Due to this restriction, the number of matchings in the figure % is equal to 0. In terms
of Theorem 3.4, this means that there will be no jumpers A;Cy and B1D; after the removal
of the chip. As for the remaining part of the graph G, there are no restrictions at all, this
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part may be nonbipartite and may have no Pfaffian orientation. However, if the graph does
have a Pfaffian orientation, then Theorem 3.5 becomes just a corollary of Theorem 3.4 and
formula (4).

4. Examples of the form G x P,,. In the examples, we will use the Fibonacci sequence f,,
where f1 =1, fo =2, and fp,+1 = fn + fn—1, and the Pell numbers p,, (the sequence A000129
in OEIS):

=1 p2=2, ppy1=2p, +pPp_1, Pn= \/2<(1+\/2)n_(1_\/2)n)' (5)

4
Lemma 4.1. (a) Let x,, be the sequence given by an initial value xoy and the recurrence
1
T+l = To — , n>0.
Tn

Then x, = U(}I(lx%f), where Uy, are Chebyshev polynomials of the second kind.

(b) The following equalities hold: fp, = (=)™ Up_1(i/2), pm = (=)™ Unm_1(3).

(¢) The sequences x,, and y, given by the initial conditions x1 = y1 = 1 and recurrences
1 1

xn-ﬁ-l:l—'_xa yn+1:2+y7 n207

can be given by the explicit formulas xn = fnt1/fn, Yn = Pn+1/Dn-
Proof. (a) The Chebyshev polynomials U, satisfy the recurrence
Un+1(x) = 22Uy, — Upp—1(2), Up=1, Uy =2x. (6)

Since xg = g;gggg, we immediately obtain the desired formula.

(b) Tt is easy to see, due to (6), that the sequences (—i)™ 1U,,—1(i/2), (—=3)™ 1Up_1(i)
satisfy the recurrences and initial conditions for the Fibonacci and Pell numbers.
(c) Obvious. O

Example 4.1. Let us find the matching numbers of the graphs W4 x P, and K4 X Pp,_1,
where Wy is the 4-cycle with one diagonal and K, is the complete graph on 4 vertices. Both
graphs are nonbipartite and nonplanar, but they have Pfaffian orientations (see Fig. 2; the same
figure depicts also a Pfaffian orientation of Wy x P, regarded as a subgraph of Ky x P,,,_1).

Theorem 4.2. (a) The matching number of the graph Wy x Py,_1 equals
M(W4 X Pm—l) = fmpm-
(b) The matching number of the graph K4 x Pn,_1 equals

iv3 —iv/3
The first claim of the theorem was proved in [9]. The sequences in the theorem are A001582
and A005386 from OEIS. For even m, the number |Um(i‘2/3)\ is an integer; for odd m, the

number \\/3Um(“2/3)| is an integer. Thus the number M (K4 x P,,_1) is of the form n? or 3n?
depending on the parity of m. We will prove the theorem by the chip removal technique.

M(K4 X Pm—l) = Um(

Proof. We will pick and remove chips step by step: Hy = A1B1C1D1, Hy = A3 ByCsDs, etc.
Every chip Hy,, n > 2 (with the jumpers installed after removing the previous chip), is the
complete grapf K. Consider the removal of this chip in detail. Let the weights of the edges
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of the chip and of the next “layer” in the graph be given by Fig. 3 (all unmarked edges have
weight 1). Then after the chip removal, the new weights are given by the formulas

~ c = d ~ a
A:A+A, B:B+A, C:C+A, -
~ b~ = e
D_D+A, E—E+A, F_F+A,

where A = ac+bd+ef = M(H). By the way, the fact that all the signs here are pluses proves
indirectly that the orientation is Pfaffian.
Consider the matrices

1 0 0 0 0 a f d 0 —c —e —b

{0 =10 o0 _|=a 0 b —e 11 fe 0 —-d f
KE=lg 0 1 o] %= —f =b 0 ¢ |’ S " Ale d 0 -a
0O 0 0 -1 —d e —c 0 b —f —a 0

The matrix K here describes the connections of the external edges and contacts of each of the
chips H,, (Fig. 3). According to the general chip removal scheme, the rule (7) for calculating
the new weights is encoded by the entries of K75 'K asin (3). Since K is a diagonal matrix
with +1 on the diagonal, the entries of K75 ! K have the same absolute values as the entries of
Sy ! but may have “wrong” signs. This observation allows us to write a reasonable recurrence.
Let

Sn = SO - Sn__117 n Z ]., Bn = Sn for even n,
—KT7(S,)K for odd n.

We claim that B, = AV(Hn+1) for n > 0. For n = 0, this is trivial; for n = 1, we have
B = —KT(8))K = —KT7(Sy — Sy " )K = ~KT(So)K + KT(S; K.

The matrix — KT(Sy) K here is exactly the antisymmetric weight matrix of the layer Ay BoCo Do,
and the second matrix KT(Sy YK determines the positions and weights of the jumpers and
corresponds to the summands in (7) (now the signs of the entries agree with the orientations

of the edges in the layer Ay BoCoD5). Thus By = A(Hs).

B, °Cy
By e
A c
mrd ,
A4 D4
Fig. 2. A Pfaffian orienta- Fig. 3. The chip removal in the
tion of Ky x P,. graph Ky x Ps.
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At the next layer A3 B3C3Ds3, the antisymmetric adjacency matrix again equals Sy. By the
general chip removal scheme, we obtain

A(H3) = So+ KT(Bf)K = Sy — (~KTB1K) ™' = 55 — ST = Sy = By.

Thus, for n = 2 we have By = A(H3).

The subsequent operations of removing the nth chip proceed similarly to the case n =1 for
odd n, and to the case n = 2 for even n.

In order to count the number of matchings in the graph M (W, x P,,_1), choose the weights
a=b=c=d=f =1, e = 0. The matrix Sy given by these weights has the eigen-
values +i, +2i. By Lemma 4.1, we have S, = U,11(S0/2)U.(So/2)~!. Then we obtain

o _ detUn+1(S0/2)
det B, = det S, = “ U:(ISO?Q) and
MWy x Pp_1) = PE(Wy X Py_1) = v/det By -det By - ... - det By, = \/det Up,—1(S0/2).

= \/Um—l(i/z)Um—l(_i/Q)Um—l(i)Um—l(_i) = fmpm-
For the graph K4 x P,,_1, we choose the weights a = b =c=d = f = e = 1. The
eigenvalues of Sy are +iv/3 with multiplicity 2. Similarly, we have

M (Ky X Pp_1) = \/det Up,_1(S0/2) = Um<i\2/3>Um<_i2\/3>. O

Example 4.2. Let us calculate the matching number of the cylinder Cy x P, for even N
and the rectangle Py, X Pp,—1. As usual, by T,,(x) and U,,(z) we denote the Chebyshev
polynomials of the first and second kind, and by p,, we denote the Pell numbers (5).

Lemma 4.3. Let N = 2k be an even number. Consider the matrices

0O 1.0 ... 0O 0 1 0 ... 0 1
1 01 ... 00 -1 0 1 ... 0 O
0O 1.0 ... 0O O —-10 ... 0 O
By =1 o By=1 : (8)
0 00 ... 01 0O 0 0 ... 0 1
0 00 ... 10O -1 0 0 ... =1 0
Then
(a) the eigenvalues of the matriz Ry are 2 cos A;rfl,le, ..., N;

(b) the eigenvalues of the matriz By for N = 4k 4+ 2 are 2icos 417;_22, {=0,1,...,4k + 1,
i=v-1;
(c) the eigenvalues of the matrix By for N = 4k are 2icos (%Ikl)w,f =0,1,...,4k — 1.

Proof. This fact is well known and can easily be checked. The characteristic polynomial of
the matrix By equals (—1)N/2 . 2Tn (")) + 2, which explains the difference between cases (b)
and (c). O

Let

Kk,m =

b . wl
gUm_l (zcos ok + 1)‘

Below we will see (Theorem 4.7) that Kj, ,,, is an integer.

Theorem 4.4. (a) The matching number of the cylinder Cypio X Py—1 can be represented in
the form
M (Capsa X Pr1) = pmKj -
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Fig. 4. A Pfaffian orientation of the cylinder Cy x P,.

(b) The matching number of the cylinder Cy, X Py,_1 can be represented in the form

2
M(Cyx X Pp—1) (H Up— 1(zcos (%;{1) )) .

(¢) The matching number of the rectangle Py, X Pp,—1 can be represented in the form
M(ng X Pm—l) = K]“m.

Proof. (a), (b) The graph Cy x P, is bipartite; color the vertices of its parts in black and
white. Choose a Pfaffian orientation as in Fig. 4. As in the previous example, we will remove
chips H,, step by step, each of them being a cycle C'y together with the jumpers obtained at the
previous step. The first chip Hy is a cycle Cy at the edge of the cylinder. The antisymmetric
adjacency matrix of the N-cycle is given by (8):

Ay = A(Cy) = By;

let A, = A( n) be the antisymmetric adjacency matrix of the next chip, which is a graph on
N vertices located at the edge of the cylinder after n steps.

Consider the chip H,, in detail. The weights of its edges “consist of” the unit weights of the
edges of the N-cycle and the weights of the jumpers obtained by the removal of the previous
chip (for uniformity, we may assume that for n = 0 the jumpers have zero weight). The jumpers
are diagonal edges that join vertices of different color (this can be proved by induction, due to
formula (4): if the contacts vj,, v;, are of the same color, then the numerator in the right-hand
side vanishes).

The graph under consideration has two specific properties: 1) it is bipartite; 2) all contact
edges are directed from a black vertex to a white one (or from a white vertex to a black one,
depending on the parity of n), which means that half of the contact edges are directed towards
the chip, and another half are directed from the chip. Due to this fact, the jumper matrix
KTA(H,) 'K in formula (3) equals —A(H,)~!. Indeed, let us first number all black vertices
in the chip, and then all white vertices, and similarly for the contacts. Then the matrix Z(Hn)
has the block form (_g(n )g"), and K = (:FOE iOE). Comparing the product KT/T(HH)_lK

with the initial matrix E(Hn)_l, we see that all nonzero entries have changed their sign.
Thus, by formula (3), we have
Apy1=Ag— AL (9)
By Lemma 4.1, we obtain
An = Un(40/2)Un-1(A0/2)™*
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Hence
det A(Cy X Pyp—1) =det Ag-det Ag - ... det Ap,—1 = det Up,—1(Ap/2).

We will transform this expression applying Lemma 4.3; the result depends on the parity
of N/2.

For N = 4k + 2, the eigenvalues of Ay are 2icos ﬁ:é, ¢ =0,1,...,4k + 1. Each cosine
appears twice in this list, except for cos 4%’:92 =1 and cos Q”ﬁigl) = —1; we may think that
the latter two form a pair, since U,,_1 is an even (or odd) function. The determinant is the

product of the eigenvalues, therefore,

2k
= N . ¢
M(C4k+2 X Pm—l) = \/det A(C4k+2 X Pm—l) = (—Z) 1 H Um—l <Z COS T >

P % + 1
2k
m—1 . . ol 2
= (— m— m— == mK .
()™ U1 () (ZI_[U 1(zcos2k+1>> PmEL

For N = 4k, the eigenvalues of Ay are 2icos (%Ikl)w, £=0,1,...,4k — 1. And we have the
analogous formula

M(C4k X Pm—l) = \/det 2(04]6 X Pm—l)

2k—1 . 2 11 k—1 ' 9%+ 1 2
= g) Um_1<zcos( m )F> = (g Um_1<zcos( m h)) .

Below we will check that this number is a perfect square for even m, and twice a perfect square
for odd m.

(c) Observe that if we consider the standard Pfaffian orientation of the rectangle, and choose
H, to be the path Py (plus jumpers) at the edge of the rectangle, then the recurrence (9)
is valid for rectangles, too. The eigenvalues of Ay = K(ng) are 2icos 2];{1, £=1,2...,2k.
Taking into account that U,,_; is an even/odd function, we have

M (Pyjy X Ppy_q) = \/det A(Pyy X Pp_y) =

b ) iv4
gUm_l(zcos 2k‘+1)‘ = Kim- O

Comparing assertions (a) and (c) of the theorem, we obtain a corollary.
Corollary 4.4.1. M(C4k+2 X Pm—l) = pmM(ng X Pm_1)2.

In particular, for k£ = 1, due to Lemma 4.1(b), we have M (Cs x P,,,_1) = f2,pm. This is the
sequence A028477 in OEIS, its generating function is calculated in [8].

Now we will factor the numbers M (Pyy x P,,—1) and M (Cy x Pp,—1) into integers, which,
however, are neither prime nor even coprime.

Recall that the cyclotomic polynomial ®j is the polynomial whose roots are the primitive
kth roots of 1. It is known that the polynomials ®; have integer coefficients. The next lemma
contains known technical assertions, the keyword here is “the minimal polynomial for cos 7 .”
We have not found a good reference, so give a proof here.

Lemma 4.5. Let k be an arbitrary nonnegative integer. Then
(a) for every nonnegative integer a, the sum Y. 22 cos®*(’) is an integer;
1<5<| 5,
(:k)=1
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)| TI 2cos,/T |=1; (c) HZCOS @I — /o,
1<5<k,

(j,2k+1)=1

Proof. (a) Using Euler’s formula for the cosine, we can rewrite the formula as follows:

Z 220, Cos2a (]]:-) — Z(GZJI: +e zj]:' )2(1

1<5<| 5], J

(Uk)=1
2a
2a\ ;(@a-2m)jx 2a ; (a=m)2jm
—E S (et oy () e
j m=0 m 1<5< 5],
(7,k)=1

The last sum over j is an integer; indeed, if (a —m, k) = 1, then this is the sum of all primitive
kth roots of 1, which is equal to some coefficient of ®;; and if (¢ — m, k) = d > 1, then the

sum contains all primitive (k/d)th roots of 1 with multiplicity d.
2k :
(b) Observe that | [] 2cos 2211 = 1, because this is the constant term of the polynomial
j=1
Usi(2z/2). All the cosines in this product form pairs such that in each pair the cosines differ

k )
only by the sign; therefore, ] 2cos 2%11 = 1. Denote this product by Q(2k + 1) and the
j=1
product from the statement of the lemma by P(2k + 1). Then for all k,

1=Q12k+1) = H20082k+1 H H 200s2k+1 H P(21))

d|(2k+1) 1<j<k, d|(2k+1)
(j,2k+1)=d

Now we can obtain an expression for P(2k+1) by the inclusion—exclusion principle: P(2k+1) =
II Q(%jl)”(d) = 1, where p(d) = 0,=£1 is the Mébius function.

d|(2k+1)
~1 2%k—1
(c) Observe that H cos J” H cos 7r is the product of all roots of the polynomial Us_1
7=1

except 0; therefore, by the Vlete theorem, this product equals +k (the coefficient of z in
Usi—1). Then

2k—1 in 2Ii_[1 N 4Iﬁ1 in
e , [T 2cos cos 7, - cos
! 2+ ) j=1 4k j=2k+1 4 2k
H2cos n = = o1 =\ = V2. g
3=0 [T 2cos % Hcosjzz' [[ cos?iy
j=1 j=1 j=k+1
Lemma 4.6. (a) Let x1, ..., x, be real numbers such that for every nonnegative integer k,
n
the sum ;U;“ is an integer. Then for any nonnegative m and any ordered set (ay,...,an)
j=1
of nonnegative integers, the sum H x is an integer (the sum runs over all possible
(.]17 Jm)k 1
ordered sets of m different numbers j1,...,Jjm € {1,...,m}).
(b) Let x1, ..., x, be real numbers such that for every nonnegative integer k, the sum Z :1:

is an integer, and let P be a polynomial with integer coefficients. Then the following holds If
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n
P is an even function, then the product || P(x;) is an integer; if P is an odd function, then
i=1

SWACON .
the product H o 1S an integer.
i=1 "

The first claim can be proved by induction on m. The second claim follows from the first
one.

Theorem 4.7. The following decompositions hold, the value of the product corresponding to
every h being an integer for each of them:

M(Py x Pt =TT | 11 Um_1<z'cos2,jil>, (10)

hl2k+1| 1<j<k,
(j:2k+1)=h

2

M (Cup, X Popp) = H H Uam <Z Cos (2j;1)ﬂ> ,

hlk | 0<j<k—1,
(25+1,k)=h

2
Uspm_11| 1 cos 2t
M(C4k X Pgm_l) =2 H H ’ 1( i )

hlk | 0<j<k—1, 21 cos
(2j+1,k)=h

2j+1)m
4k

Proof. Let us prove formula (10).
For odd m, the polynomial U,,_1(z/2) has integer coefficients and is an even function. For
every nonnegative integer a and any divisor h|(2k + 1), the following equality holds:

jﬂ' 2a jﬂ' 2a
- _ 2a
1<Z<:k <2wos 2k‘+1> =+ ZF 2 <cos %) ,
(j,zﬁii)’:h 1<i<ly ),

(4,k)=1

where k = 2k+1 By Lemma 4.5(a), the sum in the right-hand side is an integer. Then, by

Lemma 4.6(b), each product over j in formula (10) is an integer.
For even m, the polynomial U,,_1(z/2) has integer coefficients and is an odd function.
As in the previous paragraph, we obtain by Lemmas 4.5(a) and 4.6(b) that the product
H Um—1 (z cos 2%11)
1<j<k, 2i cos 2;11
(j,2k+1)=h
nators equals 1 by Lemma 4.5(b).
The two other formulas can be proved analogously; the factor 2 appears in the last formula

due to Lemma 4.5(c). O

is an integer. It remains to observe that the product of the denomi-

From this theorem we can immediately obtain Sellers’ [9] observation that the number
M(Ps x Py,—1) is divisible by f,. Indeed, for k =1 (mod 3), the factor in (10) corresponding
to h = (2k + 1)/3 is the Fibonacci number f,, = |Up,—1(i/2)|.

The decompositions in the theorem are far from being decompositions into primes or at least
coprime integers. For example, M (Py x Ps) = 12988816 = 2% - 172 - 532 (see [10]). Applying
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assertion (a) of the theorem for k =4, m =9, we have for h = 1

; 2 4
I1 Um_1<z'cos iji 1) — Uy <z cos g) Us <z cos 9;T>-U8 <icos g) — 382024 = 23.17-532,

1<j<k,

(4,2k+1)=h
and for h =3
) g - ) ™ o,
H Upn—1 <2cos ok + 1) = Ug<zcos 3) =34=2-17.
1<5<k,
(4,2k+1)=h

5. Examples on the hexagonal lattice

Definition. A hexagonal a x b parallelogram is a figure on the hexagonal lattice consisting of
b rows of a hexagons each, where every next row is shifted half the width of the hexagon to
the right with respect to the previous row, see Fig. 5. Denote by B, ; the graph whose vertices
are the nodes of the parallelogram and edges are the lines of the hexagonal lattice.

Fig. 5. The hexagonal parallelogram Bg 4.

The following theorem was proved in [5]. We suggest a proof by means of the chip removal
technique.

a+b) ]

Theorem 5.1. The number of matchings in the hexagonal parallelogram B, equals ( "

Proof. Fix a Pfaffian orientation of the graph B, as in Fig. 5. Assume that the edges of the
initial graph have weight 1. We will successively remove chips.

Let the first chip H; be the upper “horizontal” layer consisting of 2a + 2 vertices (in the
figure below, the dotted line cuts off the chip, the contacts are numbered). It is easy to see
that after the chip removal all the jumpers “share” the vertex a 4+ 1. Indeed, if we remove
two vertices of the chip connected with the ith and jth contacts (i, j < a + 1), then the chip
splits into two odd components and has no matchings, so that the weight of the corresponding
jumper equals 0. Note that the jumper (a4 1) — 1 is not shown in the figure, we assume that
its weight is just added to the existing edge.

After the removal of each next chip Hy, we have a similar picture: the jumpers share the
rightmost vertex (Fig. 6). Let us calculate the weights of the jumpers after the removal of the
chip Hi. Number the vertices of the two consecutive layers as in Fig. 6. Let the weights of
the jumpers of the previous chip be equal to wi g4+1, W2 a+1, - -, Waeat1, and the orientation
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of the jumpers be “hidden” in the signs of the weights.

Fig. 6. Removing the chip Hj, in the graph B, .

Since the chip Hj has a unique perfect matching,

Pf(Hk) = sgn(l, a—+ 2, 2, a—+ 3, oo, a, 2a + 1, a—+ 1, 2a + 2) cWY,q4+2W2,043 * * * Wa,2a+1Wa+1,2a+2
a(a+1) a(a+1)
— (D)"Y (e = ()™
Denote by Waq 4244 3q+3 the weight of the jumper that joins the contacts 2a+ 2+ and 3a + 3.
Note that for ¢ = 1, this jumper is added to the existing edge; in this case, we will use the
Kronecker symbol d;;. In order to calculate the weight Waq 124 34+3 by formula (4), we should
remove from the chip the second endpoints of the contact edges, i.e., the external vertices
a+ 14 ¢ and 2a + 2, and calculate the Pfaffian of the remaining part of the chip:
Waqt2+i3a+3

a % a Pf(H, a+1+i,2a+2
= i1 + (= 1) OTIFDFCIED st - Waat2,3043 ¢ (Hi\ { b
Pf(Hy)

=01 + (_1)a+1+“(“2+1) TPE(H \ {a+ 1 +14,2a + 2}).

It remains to calculate the Pfaffian Hy \ {a + 1 + ¢,2a 4+ 2}. The matchings in this graph are
uniquely determined by the “arc” edge (j,a 4+ 1). Hence

Pf(Hy \ {a+1+1i,2a +2})

1
= ngn(l,a+2,...,j—l,a+j,j,a—i—l,j—i—l,a—i—j+1,...,i,a+z’,i+1,a+i+2,...,a,2a—i—1)
j=1

XW1,042° -+ Wa2aH
7
ala—1) (.
=3 D (12)
j=1
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2a 2a —1 a+3 a+2 a+1

Fig. 7. The result of
removing the chip Hy Fig. 8. Arnold’s snake
in the graph B, . of order 5.

Combining the two previous formulas, we obtain

Waat2+iga+s = 0i1 + ( Z “wjapr
Let us change the notation: let Ap_;; = (=1 w;a41, 5=1, 2, ..., a. In particular,
App =1, Ago = Apg = ... = Ap, = 0 (these equalities mean that the chip H; has no

jumpers). In the same terms, Waqi24i3q+3 = (—1)1_1Akﬂ-, and we can rewrite the obtained
equality in the form

i
Api =01+ ZAk—l,j-
i=1

It is not hard to see that the following sequence solves this recurrence:

k+3—-1 k

After b chip removal operations, almost the whole graph is removed and we obtain the graph
Hgy (see Fig. 7); its Pfaffian Pf(Hpgy) can be calculated similarly to (12):

a(a—1) a .
Pf(Hgn) = (1) 2 Z(—l)z i g1 (13)
a(a 1) a(a=1) b+1—1 ate=1) b+ a
- ZA,”_— ;( . ):(—1) > <a> (14)
Thus M(B,;) = |Pf(H1) - PE(Hy) - ... - PE(Hy) - PE(Hgy)| = (°F7). O
n(n+1)

Definition. Consider the figure on the hexagonal lattice consisting of ™,""/ hexagons ar-
ranged in n rows such that the ith row contains ¢ hexagons and the rows are shifted to the
left or the right as shown in Fig. 8. We will call this figure, as well as the graph S,, formed by
the nodes and line segments in it, Arnold’s snake of order n.

Recall the construction of the Euler-Bernoulli triangle (see [2]). This triangle looks like the
Pascal triangle. The top vertex of the triangle (this is the Oth row) contains 1. Every element ¢
in an odd row equals the sum of the elements in the previous row to the left of ¢, and every
element t in an even row equals the sum of the elements in the previous row to the right of ¢.
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Let us number the elements from left to right in odd rows, and from right to left in even rows:

1 too
0 1 10 (351
0 1 2 2 130 t31 132 133 (15)
5 5 4 2 0
0 5 10 14 16 16
With this numbering, the recurrence for the Fuler—Bernoulli triangle takes the form
n—1
lno = 0, lni = Z tn—l,j-
j=n—1

The sequence {t,, ,, }n>1, that starts as 1,1,2,5,16, ..., is called the Fuler-Bernoulli sequence.

The nonzero numbers E, = ta, 2, at the left side of the triangle are the Euler numbers,
> (2En")!t2" = sect; and the nonzero numbers 7T, = t2,,—1,2,—1 at the right side are the tangent

numbers, Y (%Tfl)!t%_l = tant.

Theorem 5.2. The matching number of Arnold’s snake of order n equals the (n+ 2)th Euler—
Bernoilli number t,42n+2-

Fig. 9. Removing the chip Hy in Arnold’s snake.

Proof. We will remove chips from top to bottom, each chip containing all vertices of one
horizontal layer. As in the proof of the previous theorem, after the chip removal the new
jumpers share the leftmost (as in Fig. 9) or the rightmost (as in the figure below) vertex of
the chip, depending on the parity of the number of the chip.

~ Ty

Let us number the vertices of the graph in such a way that for vertices on the same horizontal
layer the directions of numbering interchange: two layers are numbered from left to right, then
two layers are numbered from right to left, etc. (see Fig. 9). Consider the operation of
removing the chip Hi. We may assume that the numbering starts from 1. Let the weights of
the jumpers in the previous chip be equal to wy j41, W2 k41, - .., Wg—1,k+1, and the orientation
of the jumpers be “hidden” in the signs of the weights. For uniformity, we assume that the

646




edge k — (k+1) is present and wy 41 = 0. The edges of the initial graph have weight 1. Let
us calculate the weights of the new jumpers Wog 94 3544
First, calculate the Pfaffian of Hy. The matchings of Hy are uniquely determined by the

edge j — (k+1):
k—1
Pf(Hp)=) sgn(l,k+2,2,k+3,... i1 k+i i, k+1,i+1,k+i+1,... & 2k 2k+1,2k+2)

=1 XWL 42 oo - Wi ki - Wi k41 ° Witk 1, k+it1 " - - - W2k41,2k42

k(k 1)
* Wi k+1-

||M

Second, calculate the Pfaffian of the chip with the removed external vertices of the edges
(2k+2) — 3k +4) and (2k +2+1i) — (2k +1 —14). For i < k, a matching in the graph
Hp\ {2k +1—1,2k + 2} is uniquely determined by the edge j7 — (k+ 1), where i < j < k; and
for i = k, there exists only one matching. Analogously to (11), (12), we obtain for ¢ < k,

k‘

-! R (i)
PEHE\ {2k +1—14,2k+2}) ) (=1) 2 "V wjpsa;

)

.
Il

and for i = k,
k(k—1)

Pf(H) \ {k+ 1,2k +2}) = (1) >

Now use formula (4) to find the weight Waq4244 34+3 Which corresponds to the contact edges
(2k+1—14) — (2k+2+1i) and (2k 4+ 2) — (3k +4). For i < k,

Wokt2+i,3k+4
PE(H,\ {2k +1— 4,2k +2))

= 01 + (= 1) PFFImOT @D 1 oo - Wogto 3kta - Pf(Hy)
Z (=1 w; k1
- 51‘1 + (_1)H—1 k—1

> (=1 wj g

Similarly, for i = k we have

1

k—1
(=1 w
i—1

Wag 23514 = (—1)FF!

It remains to calculate the Pfaffian of the graph obtained after the removal of the chip H,.
As in the previous theorem, it is given by formula (13) (see. Fig. 7):

k
k(k—1) )
Pf(Hn1) = (=1) 2 > (=1 -y,
i=1

Let us change the notation: let Ax_q1; = (1) w; k41, j = 1, 2, ..., k. In particular,
Apyp = 1 = 011 (these equalities mean that the chip H; has no jumpers). In this notation,
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Wokto4i3k+4 = (—1)i+1Ak,i, and we can rewrite the obtained recurrence in the form

k=1
.Z, Ak_l’j 1
j=i .
Api =00+, , i<k Aek =, .
Ap-1, > Ak
= =1

It is not hard to check that the following weights solve this recurrence:

b k—i
Lk k

2e k-1 tkk—1 T+ thk

Ap_1;=
’ tr ke tr ke

for i > 1, Ak—l,l =2=

Therefore, Pf(Hy) = tk“’i“ forn >k > 1,

ty

t -1t
PE(H)) = 1 — 2,2 PE(H, 1) = (_1)k(k2 1) n+2n+2
t1,1 tprintl
Then the matching number of Arnold’s snake of order n equals
t t t t
|pf(H1) -Pf(Hy) - ...-Pf(H,) - Pf(Hn+1)| _ "22 3 tmindl Ind2n42
t11 too thn  tntintl
t
_ nt2ny2 _ bt 0
t1,1
Translated by the authors.
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