Performance Prediction for Coarse-Grained Locking

Vitaly Aksenov, ITMO University and INRIA Paris
Dan Alistarh, IST Austria
Petr Kuznetsov, Telecom ParisTech

PODC 2018
Measure Efficiency

How to measure efficiency:

- Theoretically: Number of steps, Number of messages
- Experimentally: Throughput, Latency

Goal: theoretically predict Throughput!
Coarse-Grained Data Structure

Simple but non-trivial class. E.g., hash-tables.

```python
operation():
    lock.lock()
    for i in 1..C:
        nop
    unlock.lock()
    for i in 1..P:
        nop
```
Assumptions

- Variant of MESI Protocol (Modified, Shared, Exclusive and Invalid)
- One-Layer Symmetric Cache: W_{st} and R_{st} (in cycles)
- Intel Xeon Machine. $W = W_M = W_S = W_E = W_I$ and uncontended swap takes W [David et al., 2013]
- Uniform Scheduler: at each unit of time each process makes a step
- CLH Lock [Craig, 1993]
global Node head ← new Node()
local Node my_node ← new Node()

operation():
 Node next ← swap(&head, my_node) // W or X
 while (next.locked) {} // R_i or 2 · R_i
 for i in 1..C: // C
 nop
 my_node.locked ← false // W
 my_node ← next
 my_node.locked ← true // W
 for i in 1..P:
 nop
1. There is always somebody in the queue

\[P \leq (N - 1) \cdot W \text{ then } \frac{\alpha}{R_l+C+W} \approx \frac{\alpha}{C} \]
2. The queue is always empty

\[P \geq (N - 1) \cdot W \] then

\[\frac{\alpha N}{(W + P + W) + (R_I + C + W)} \approx \frac{\alpha N}{P + C} \]
40 processors = 4 chips Intel Xeon × 10 cores.

$\alpha = 3.5 \cdot 10^5$, $W \approx 40$, $R_l \approx 80$
Future Work

- Generic analysis — different scheduler
- Generic computational model
- Another lock implementations
- More complex types of programs