1. \(f(xy) = f(x)f(y) - f(x+y) + 1 \) and \(f(1) = 2 \).

Put \(x = 1 \) and \(y = n \): \(f(n) = 2f(n) - f(n+1) + 1 \Rightarrow f(n+1) = f(n) + 1 \). This means that \(f(n) = n + 1 \).

For \(x = k \) and \(y = \frac{n}{k} \): \(f(n) = f(k)f(\frac{n}{k}) - f(k + \frac{n}{k}) + 1 \Rightarrow n + 1 = (k + \frac{n}{k})f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow f(\frac{n}{k}) = \frac{n+1}{k+1} \).

Thus, for \(x \in \mathbb{Q} \) \(f(x) = x + 1 \), and since \(\mathbb{Q} \) is dense in \(\mathbb{R} \) we have \(f(x) = x + 1 \) for \(x \in \mathbb{R} \).

2. Let \(f(0) \neq 0 \). Then \(|f(0) - 0| > |f(f(0)) - f(0)| \geq |f(f(f(0))) - f(f(0))| \geq |0 - f(0)| \geq |f(0) - f(f(f(0))))| = |f(0) - f(0)| \). Contradiction.

3. \(f(x) + f(\frac{x}{x-1}) = 1 + x(1) \).

For \(x = \frac{x-1}{x} \): \(f(\frac{x-1}{x}) + f(\frac{x}{x-1}) = 2\). For \(x = \frac{x-1}{x} \): \(f(\frac{x-1}{x}) + f(x) = \frac{x+1}{x} \).

\((1) + (3) - (2) \): \(2f(x) = 1 + x + \frac{x}{x+2} - \frac{2x-2}{x} = \frac{x^2-x^2-1}{x^2(x-1)} \Rightarrow F(x) = \frac{x^3-x^2-1}{2x(x-1)} \).

4. \(3333 = f(9999) = f(9996)+f(3)+\delta_{9996,3} = f(9993)+2f(3)+\delta_{9993,3} = \ldots = 3333f(3)+\delta_{9996,3}+\ldots \).

This means that \(f(3) = 1 \) and \(\delta_{9996,3} = \delta_{9993,3} = \ldots = 0 \) since \(2013 \) is divisible by 3, \(f(2013) = 671 \).

Since the function is continuous it maps \((\infty, \infty)\) to some interval \(X \). All irrationals from \((-\infty, \infty)\) are mapped into rationals from \(X \). Thus, rationals from \((-\infty, \infty)\) are mapped to all irrationals and the set of rationals from \(X \). This is impossible, since the set of irrationals in \(X \) is countable, while the set of rationals is countable.

6. Let \(f \) be not equal to zero. Then, since \(f \) is continuous, there exists an interval \([a, b]\) such that \(a-b < 1 \), \(f(a) = 0 \) and \(f(b) \) is the maximum on the interval. By the Mean Value Theorem: \(\frac{f(b)-f(a)}{b-a} = f'(c) \Rightarrow |f'(c)| < |f(b)| < |f'(c)| \). Contradiction.

7. Let \(g(t) = \frac{f(\cos t)}{\sin t} \), then \(g(t+\pi) = g(t) \).

\(g(2t) = \frac{f(2\cos^2(t)-1)}{2\sin t \cos t} = \frac{f(\cos t)}{\sin t} = g(t) \).

Then for any \(n \) and \(k \) \(g(1+\frac{n\pi}{k}) = g(2k+n\pi) = g(2k) = g(1) \). Since, \(\{1+\frac{n\pi}{k} : n, k \in \mathbb{Z} \} \) is dense and \(g \) is continuous on its domain, \(g \) is constant on its domain. We know that \(g(t) = g(-t) \), thus \(g(t) = 0 \), when \(t \) is not a multiple of \(\pi \). Hence, \(f(x) = 0 \) for \(x \in (-1, 1) \). Finally, since \(f \) is continuous, \(f(x) = 0 \) for \(x \in [-1, 1] \).

8. When \(a > 2 \), \(f(x) = \frac{2a}{x^2} \) satisfies the perimeter and the area are equal to \(\frac{2a^3}{x^2} \).

Now, suppose \(a \leq 2 \). Let \(M \) be the maximal value of \(f(x) \). Then the area does not exceed \(a \cdot M \). At the same time, the perimeter is at least \(2M + a \) from \((0, 0)\) to point with \(f(x) = M \), from point with \(f(x) = M \) to \((a, 0)\) and from \((a, 0)\) to \((0, 0)\). It can be seen that area \(\leq a \cdot M \leq 2M + a \leq \text{perimeter} \).

9. \(f'(x) = \frac{a}{x^2} \). Let us take the derivative: \(f''(x) = -\frac{a}{x^2} + \frac{a^2 f'(x)}{x^2} \).

Now, substitute \(f(\frac{x}{a}) = \frac{x f'(x)}{a} \) and \(f'(\frac{x}{a}) = \frac{x f''(x)}{a} \). \(f''(x) = -\frac{f'(x)}{x} + \frac{f''(x)}{x} \).

Clear denominators: \(x f(x) f''(x) + f(x) f'(x) = x f'(x) \).

Divide by \(f(x)^2 \). \(0 = f'(x) + f''(x) f(x) = f'(x) \).

Thus, \(f'(x) = \frac{d}{x} x \) and \(f(x) = c x d \).

10. By the Mean Value Theorem there exists \(c_1 \in [-a, 0] \) such that \(|f'(c_1)| = f(0)-f(-a)| \leq \frac{2}{a} \) and consequently, \(f(c_1)^p + f'(c_1)^q \leq 1 + (\frac{2}{a})^q \). Analogously, there exists \(c_2 \in [0, a] \) such that \(f(c_2)^p + f'(c_2)^q \leq 1 + (\frac{2}{a})^q \) and \(f(x) \geq 1 - x. \) Analogously, \(1 \geq f'(c) = \frac{f(2)-f(3)}{2-x} = \frac{1-f(x)}{2-x} \) and \(f(x) \geq |x-1| \).