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Abstract. In this paper we present a new method of learning Finite-
State Machines (FSM) with the specified value of a given fitness function,
which is based on an Ant Colony Optimization algorithm (ACO) and a
graph representation of the search space. The input data is a set of events,
a set of actions and the number of states in the target FSM and the goal
is to maximize the given fitness function, which is defined on the set of
all FSMs with given parameters. Comparison of the new algorithm and
a genetic algorithm (GA) on benchmark problems shows that the new
algorithm either outperforms GA or works just as well.

1 Introduction

Finite-state machines can be applied to various problems. FSMs have proven
to be a good representation of agent strategies [I]. They are also used as effi-
cient representations of large dictionaries [2]. In a programming paradigm called
automata-based programming [3] FSMs are used as key components of software
systems.

The problem of inducting finite-state machines for a given fitness function
has drawn the attention of many researchers. The common approach to this
problem is the use of various evolutionary algorithms (EA). In [I] Spears and
Gordon used evolutionary strategies (ES) to learn FSMs for the Competition
for Resources problem. In [4] and [5] a GA was used for inducting a FSM from
test examples with a special crossover operator based on tests. In [2] Lucas and
Reynolds used an EA to learn deterministic finite automata from labeled data
samples. Another GA was used in [6] to build an optimal solution of the John
Muir food trail problem. EA have proven to be efficient in cases when FSMs
cannot be built heuristically.

The optimization problem we are solving is formulated in the following way:
given the number of states IV, a set of events X and a set of actions A build a
FSM with the specified target value of the fitness function f.

We propose a new local-search heuristic method of learning FSMs based on
ACO and compare it with GA in terms of performance.
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2 ACO Overview

In ACO, the solutions are built by a set of artificial ants which use a stochas-
tic strategy. The solutions can be represented either as paths in the graph, or
simply by graph vertices. Each edge (u,v) of the graph (u and v are vertices of
the graph) has an assigned pheromone value 7,, and can also have an associ-
ated heuristic distance 7),,. The pheromone values are modified by the ants in
the process of solution construction, while the heuristic distances are assigned
initially and are not changed. An ACO algorithm consists of three major steps
which are repeated until a viable solution is found or a stop criterion is met. In
the first step — ConstructSolutions — each ant explores the graph following a
certain path. The ant chooses the next edge to visit according to the pheromone
value and heuristic distance of this edge. When an edge has been selected, the
ant appends it to its path and moves to the next node. In the next stage —
UpdatePheromones — the pheromone values of all graph edges are modified.
A particular pheromone value can increase if the edge it is associated with has
been traveled by an ant or it can decrease due to evaporation. The amount of
pheromone that each ant deposits on a graph edge depends on the quality of the
solution built by this ant, which is measured by the fitness function value of this
solution. On the last (optional) stage — DaemonActions — some procedure is
executed performing actions that cannot be performed by individual ants.

When we apply ACO to FSM generation we have to deal with huge graphs,
sometimes consisting of several millions vertices. In our work we apply a variation
of the expansion technique introduced in [7] — we limit the ant path lengths to
reduce the size of the graph we store in memory.

3 Finite-State Machines and Search Space Representation

We formally define a finite-state machine as a sextuple (S, X, A, 4§, A, sg). Here,
S is a set of states, X is a set of input events, A is a set of output actions.
¢ is a transition function mapping a state and an event to another state, i.e.
0(s,e) = t, where s,t € S, e € X. X\ is a transition function mapping a state
and an event to an output action, i.e. A(s,e) = a, where s € S, e € ¥, a € A
and sq is the initial state.

Informally speaking, a mutation of a FSM is a small change in its structure.
In this work we consider two FSM mutation types:

— Change transition end state. For a random transition in the FSM, the
transition’s end state is set to another state selected uniformly randomly
from the set of all states S.

— Change transition action. For a random transition in the FSM, the tran-
sition’s output action is set to another action selected uniformly randomly
from the set of actions A.

The search space, which is a set of all FSMs with the specified parameters, is
represented in the form of a directed graph G with the following properties:
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— the vertices of G are associated with FSMs;

— let u be a vertex associated with FSM A; and v be a vertex associated with
FSM A,. If machine As lays within one mutation from A; then G contains
edges u — v and v — w. Otherwise, nodes u and v are not connected with
an edge.

For each pair of FSMs A; and A, and the corresponding pair of vertices v and
v, there exists a path in G from u to v and also from v to .

4 The Proposed Algorithm

The overall scheme of our algorithm complies with the classical ant colony opti-
mization algorithm with a few modifications. First we generate an initial random
solution. While stagnation is not reached, the artificial ants select paths in the
graph, building it in process and deposit pheromone on the graph edges.

4.1 Path Construction

First we need to select a node for each ant to start from. If the graph is empty,
we generate a random initial solution (a FSM) and place all the ants into the
node associated with that solution. This random initial solution is generated
by randomly defining the transition functions of a FSM with a fixed number
of states. If the number of nodes in the graph is greater than zero, then the
start nodes for the ants are selected randomly from the list of nodes in the best
path — a path traveled by a certain ant leading to the solution with the highest
fitness function value.

Let the artificial ant be located in a node u associated with FSM A. If this
node has successors, then the ant selects the next node v to visit according to the
rules discussed below — search space expansion and stochastic path selection.

Search Space Expansion. With a probability of pnew the ant attempts to
construct new edges of the graph by making Ny, mutations of A. The proce-
dure of processing a single mutation of machine A is as follows:

— construct a mutated FSM A 424045

— find a node ¢ in graph G associated with A, t1teq- If G does not contain
such a node, construct a new node and associate it with A

— add an edge (u,t) to G.

mutated’

After all Nyt mutations have been made, the ant selects the best newly con-
structed node v and moves to that node.

Stochastic Path Selection. With a probability of (1 — pnew) the ant stochas-
tically selects the next node from the existing successors set N,, of node u. Node
v is selected with a probability defined by the classical ACO formula:

7—311 ' 7751} (1)

Puv = y
S e, T
wEN,, 'uw Nuw
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where v € N, and «, 5 € [0,1]. In our algorithm all the heuristic distances
Ny are considered to be equal and do not influence path selection, 8 does not
influence path selection and a equals one at all times.

If u does not have any successors, then the next node is selected according to
the search space expansion rule with a probability of 1.0.

4.2 Controlling Graph Growth
We use the following mechanisms for controlling the graph growth rate:

— each ant is given at most ngtae steps to make without an increase in its best
fitness value. When the ant exceeds this number, it is stopped;

— the whole colony of artificial ants is given at most Nyt iterations to run
without an increase in the best fitness value. After this number of iterations
is exceeded, the algorithm is restarted.

4.3 Pheromone Update

For each graph edge (u,v) we store ATB}est — the best pheromone value that any
ant has ever deposited on edge (u,v). For each ant path, a sub-path is selected
that spans from the start of the path to the best node in the path. The values
of ATB}est are updated for all edges along this sub-path. Next, for each graph
edge (u,v), the pheromone value is updated according to the classical formula:

best (2)

Tuv = PTuv + ATuv )

where p € [0, 1] is the evaporation rate.

5 Experimental Evaluation

To evaluate the efficiency of our algorithm, we applied it to the following
problems:

— inducting finite-state transducers based on test examples [4] [5];
— inducting a finite-state machine for the John Muir food trail problem [6].

5.1 Inducting FSMs from Test Examples

Fitness Evaluation Method. The input data for this problem is the set of
possible events, the set of possible actions, the number of states in the target
FSM and a set of test examples. Each of the test examples consists of an events
sequence Inputs[i] and a corresponding actions sequence Actions[i]. For fit-
ness function evaluation, each events sequence Inputs [i] is given as input to the
FSM, and the resulting output sequence Outputs [i] is recorded. After running
the FSM on all test examples, the following value is calculated:

P, — 1 zn: (1 ED (Outputs[i], Actions][i]) ) 3)

n  maz (|Outputsli]|, | Actions]i]|)
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Here, n is the number of test examples and ED (s1, s2) denotes the edit distance
between strings s; and so. The final expression for the fitness function has the
form:

1
FF,=100- FFy + 100 (100 - ”transitions) (4)

Here, n4ransitions 1S the number of transitions in the FSM. Note that we do
not evolve the output sequences on the FSM transitions — we use a technique
introduced in [5] and used in [4] called smart transition labeling. The idea is
to evolve the numbers of output actions for each transition instead of the out-
put sequences themselves. The output sequences for each transition are selected
optimally using a simple algorithm based on test examples.

Alarm Clock Problem Description. An alarm clock has three buttons for
setting the current time, setting the alarm to a specific time and turning it on or
off. The alarm clock has two operation modes — one mode for setting the current
time and another one for setting the alarm time. When the alarm is off, the
user can push the buttons H and M to increment the hours and minutes of the
current time respectively. If the user presses the A button, the clock is switched
to the alarm setting mode. In this mode the same buttons H and M are used
to adjust the time when the alarm should sound. When the user presses the A
button in this mode, the alarm is set to go off when the current time will be
equal to the alarm time. When the alarm is ringing, the user can press the A
button to switch it off, however it will automatically turn off after one minute.
The alarm clock also contains a timer that increments the current time each
minute. This system has four input events and seven output actions.

We compare the efficiency of our algorithm with the results obtained in [6]
using a GA. The goal of the experiment was to generate a heuristically built
FSM that satisfies all the test examples, has three states and 14 transitions.

Experiment. In the experiment we searched for the solution among FSMs with
four nominal states following the experimental setup in [5]. Our algorithn had
the following values of parameters: N — 5, p — 0.5, ngtag — 20, Ngtag — 4,
Nmut —20, pnew — 0.6.

We have performed 1000 runs of our algorithm and also 1000 runs of the GA
and measured the average number of fitness evaluations used to generate the
target FSM. Results show that the ACO algorithm required an average of 53944
fitness evaluations, while GA required more than twice as much — an average
of 117977 fitness evaluations. The transition diagram of one of the constructed
FSMs is shown on Figure[Il The start state on this diagram and all the other
diagrams in this paper is always state 1.

5.2 The Food Trail Problem

Problem Description. The food trail problem, described in [8], is considered
to be a benchmark problem for testing the performance of evolutionary algo-
rithms. The objective is to find a program controlling an agent (called an ant) in
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Fig. 1. Finite-state machine for the alarm clock problem

a game performed on a square toroidal field 32 by 32 cells. There are 89 pieces
of food (apples) distributed along a certain trail in this field. In the beginning of
the game, the ant is located in the leftmost upper cell and is looking east. The
field, food trail and the ant's position at the beginning of the game are shown
on Figure Pl The black squares indicate the food, the white squares are empty
and the gray squares show the trail.

The ant can determine whether the next cell contains a piece of food or not.
On each step it can turn left, turn right or move forward, eating a piece of food
if the next cell contains one. The target controlling program must allow the ant
to eat all 89 apples in no more than 200 steps.

In this problem there are two input events — N (the next cell does not contain
an apple) and F' (the next cell contains an apple) and three output actions: L
(turn left), R (turn right) and M (move forward).

The solution proposed in [3] is to build a finite-state machine controlling the
ant. The authors of [6] achieved the best-known solution of this problem using
GA. The generated FSMs contained seven states and allowed the ant to eat all
89 apples in less than 200 steps. The construction of such a FSM in two different
experiments took the GA 160 and 250 million fitness evaluations respectively.

Experiments. We have performed two different experiments on this problem.
In the first experiment we tried to search for the solution among FSMs with
seven states, copying the experimental setup of [6]. Our algorithm produced two
valid solutions after 143 and 221 million fitness evaluations correspondingly. For
the second experiment, we chose to expand the search space and search for the
target FSM among FSMs with 12 states. We still wanted the solution FSM to
contain only seven states, therefore we modified the classical fitness function:

200 — ngteps

FA) =n+ 5)

Here, A is the FSM, n is the number of eaten apples and ngtepg is the number of
the step on which the ant ate the last apple. Our modified fitness function takes
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into account the number of states visited by the FSM in the process of fitness

evaluation:
200 — Nsteps

fd=nt 9

Here, M is the number of states in the initial FSM and N is the number of
visited states. We have performed 30 runs of our algorithm with the following
values of parameters: N — 10, p — 0.5, ngtag — 40, Ngtag — 200, Nyt —
40, pnew — 0.5. This experiment was performed for the ACO algorithm only,
because an experiment with the GA algorithm would require certain changes in
its code, which we did not have access to.

Results show that in this case our algorithm only requires an average of 37.29
million fitness evaluations to reach the desired solution. The transition diagram
of one of the generated FSMs is shown on Figure Bl This machine allows an ant
to eat all food in 189 steps.

+0.1- (M~ N) (6)

I.l

Fig.2. The field in the food trail Fig. 3. Finite-state machine for the
problem (John Muir trail) food trail problem

6 Conclusion

We have developed an ACO-based local-search heuristic method of learning
finite-state machines for a given fitness function. ACO is used to find an op-
timal vertex in a graph, where vertices are associated with FSMs and edges are
associated with mutations of FSMs. The efficiency of the proposed algorithm
has been compared to GA on the problem of inducting FST from test examples
and on the John Muir food trail problem. On both problems our method has
either outperformed GA or worked just as well.
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