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Motivation: Reliable software 

ÅSystems with high cost of failure 

ïEnergy industry 

ïAircraft industry 

ïSpace industry 

ïé 

ÅWe want to have reliable software 

ïTesting is not enough 

ïVerification is needed 
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Introduction (1) 

ÅAutomated software engineering 

ÅModel-driven development 

ÅAutomata-based programming 

Software

specification
Model Code
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Introduction (2) 

Software

specification
Model Code

Finite-state 

machine 
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Finite-State Machine 

ÅS ï set of states 

Ås0  ɴS ï initial state 

ÅɆ ï set of input events 

Åȹ ï set of output actions 

Åŭ: SĬɆŸS ï transition function 

Åɚ: SĬɆŸȹ ï actions function 

Example: 

Åtwo states 

Åevents = {A, T} 

Åactions = {z1, z2, z3, z4}  
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Automated-controlled object

Finite-state 

machine

Controlled 

objectActions

Events

Automata-based programming 

Design programs with 

complex behavior as 

automated-controlled 

objects 

e1

e2

z1

z3

Events
Output 

actions

z2

z4

z2
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Automata-based programming: 

advantages 
ÅModel before programming code, not vice 

versa 

 

 

 

ÅPossibility of program verification using 

Model Checking 

ÅYou can check temporal properties (LTL) 

 

Model Code

Finite-state machine
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Issues 

ÅHard to build an FSM with desired 

structure and behavior 

ÅSeveral problems of learning FSMs were 

proven to be NP-hard 

ÅOne of the solutions ï metaheuristics 
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Software

specification

Test 

examples

Modeling 

environment

Fitness function 

f: X Ÿ R

Learning finite-state machines with 

metaheuristics 

 

 

ÅNstates ï number of states 

ÅɆ ï input events 

Åȹ ï output actions 

ÅX = (Nstates, Ɇ, ȹ) ï  

    search space 

ACO for Learning FSMs 9 



Approaches to learning FSMs 

ÅGreedy heuristics 

ïproblem-specific 

ÅReduction to SAT and CSP problems 

ïfast 

ïproblem-specific 

ÅEvolutionary algorithms (general) 

ïslow 
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Proposed approach 

ÅBased on Ant Colony Optimization (ACO) 

ÅNon-standard problem reduction 

ÅModified ACO algorithm 
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Solution representation 

Transition table   Output table 

ŭ Event   ɚ Event 

State A T   State A T 

1 1 2   1 z1 z2 

2 2 1   2 z2 z3 
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ñCanonicalò way to apply ACO  

ÅReduce problem to finding a minimum cost 
path in some complete graph 

ÅVertices ï FSM transitions: 

ï<i  ɴS, j  ɴS, e  ɴɆ, a  ɴȹ> 

ÅEach ant adds transitions to its FSM 

ACO for Learning FSMs 

1Ÿ1 [T/z1] 1Ÿ2 [A/z2]

13 



ñCanonicalò ACO: example 

Å2 states 

Å2 events 

Å1 action 
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ñCanonicalò ACO: issues 

ÅNumber of vertices in the construction 

graph grows as (Nstates)
2Ĭ|Ɇ|Ĭ|ȹ| 

ÅNo meaningful way to define heuristic 

information 

ÅLater we show that ñcanonicalò ACO is 

ineffective for FSM learning 
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Proposed algorithm: MuACOsm 

ÅMutation-Based ACO for learning FSMs 

ÅUses a non-standard problem reduction 

ÅModified ACO 
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Problem reduction: MuACOsm 

vs. ñcanonicalò 
ÅñCanonicalò ACO 

ïNodes are solution components 

ïFull solutions are built by ants 

ÅProposed MuACOsm algorithm 

ïNodes are full solutions (FSMs) 

ïAnts travel between full solutions 
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FSM Mutations 
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MuACOsm problem reduction 

ÅConstruction graph 

ïnodes are FSMs 

ïedges are mutations of FSMs 

ÅExample 
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Real search space graph 
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Part of real search space (1) 
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Part of real search space (2) 
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Heuristic information 

u v
ɖuv = max(ɖmin, f(v) ï f(u)) 

Finite-state machines 
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ACO algorithm 

A0 = random FSM  

Improve A0 with (1+1) - ES 

Graph = { A0}  

while not stop() do  

  ConstructAntSolutions  

  UpdatePheromoneValues  

  DaemonActions  
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Constructing ant solutions 

ÅUse a colony of ants 

ÅAn ant is placed on a 

graph node 

ÅEach ant has a limited 

number of steps 

ÅOn each step the ant 

moves to the next node 
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Ant step: selecting the next node 

Go to best mutated 
FSM 

 

Probabilistic 
selection 

P = Pnew 

P = 1 ς Pnew 
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Pheromone update 

ÅAnt path quality = max fitness value on a path 

ÅUpdate        ï largest pheromone value 

deployed on  edge (u, v) 

ÅUpdate pheromone values: 

 

 

 

Å                 ï pheromone evaporation rate 
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Differences from previous work 

ÅAdded heuristic information 

ÅChanged start node selection for ants 

ÅCoupling with (1+1)-ES 

 

ÅMore experiments (later) 

ÅMore comparisons with other authors 

ÅHarder problem 
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ñSimpleò problem: Artificial Ant 

ÅToroidal field NĬN 

ÅM pieces of food 

Åsmax time steps 

ÅFixed position of food 
and the ant 

ÅGoal ï build an FSM, 
such that the ant will eat 
all food in K steps 

 

Field example: John Muir Trail 
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Artificial Ant: Fitness function 

max

lastmax
food

1

s

ss
nf

--
+=

Ånfood ï number of eaten food pieces 

Åsmax ï max number of allotted steps 

Åslast ï number of used steps 

f 

eaten food 

used time steps 
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ñSimpleò problem: Artificial Ant 

ÅTwo fields: 

ïSanta Fe Trail 

ïJohn Muir Trail 

ÅComparison: 

ïñCanonicalò ACO 

ïChristensen et al. (2007) 

ïTsarev et al. (2007) 

ïChellapilla et al. (1999) 
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ñCanonicalò ACO 

ñCanonicalò 

ACO 

MuACOsm 

State 

count 

Success 

rate, % 

Success 

rate, % 

5 18 87 

10 10 91 
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Santa Fe Trail (Christensen et 

al., 600 steps) 
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John Muir Trail (Tsarev et al., 

2007): 200 steps 

Å MuACOsm is 30 times faster for FSMs with 7 states 
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ñHarderò problem: learning Extended 

Finite-State Machines (1) 
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Input data: 

ÅNumber of states C and sets Ɇ and ȹ 

ÅSet of test examples T 

ÅTi =<input sequence Ij, output sequence  Oj> 

 

NP-hard problem: build an EFSM with C 

states compliant with tests T 

 

 

 

ñHarderò problem: learning Extended 

Finite-State Machines (2) 
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Learning EFSMs: Fitness 

function 
ÅPass inputs to EFSM, record outputs 

ÅCompare generated outputs with references 

ÅFitness = string similarity measure (edit 

distance) 
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Experimental setup 

1. Generate random EFSM with C states 

2. Generate set of tests of total length CĬ150 

3. Learn EFSM 

4. Experiment for each C repeated 100 times 

5. Run until perfect fitness 

6. Record mean number of fitness evaluations 
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Learning random EFSMs 
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