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Motivation: Reliable software

A Systems with high cost of failure
I Energy industry
I Alircraft industry
I Space industry
G
A We want to have reliable software
| Testing Is not enough
I Verification is needed
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Introduction (1)

A Automated software engineering
A Model-driven development
A Automata-based programming

[Softyvarg }@[ Model }@[ Code }
specification
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Introduction (2)

Finite-state
machine

{Sof_t\./var.e }@{ Model }@{ Code }
specification
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Finite-State Machine

A S set of states

A s,N ST initial state

A BT set of input events

A mi set of output actions

A G: STRY S transition function /21 Az
A & SI EY i actions function

Example:

A two states

A events = {A, T}

A actions = {z,, Z,, Z5, Z,} Az,
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Automata-based programming

Output
Design programs with =™ actions
complex behavior as e
automated-controlled I R
. — €2 T === 23 P
objects i e e
Automated-controlled object
4 N N
Finite-state Events Controlled
machine Actions > object
\_ / \_ /
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Automata-based programming:
advantages

A Model before programming code, not vice
versa

Finite-state machine

-
Model H Code }
N

A Possibility of program verification using
Model Checking

A You can check temporal properties (LTL)
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|ssues

A Hard to build an FSM with desired
structure and behavior

A Several problems of learning FSMs were
proven to be NP-hard

A One of the solutions i metaheuristics
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Learning finite-state machines with

metaheuristics
A N, I NUMber of states Software }
specification

A E 1 input events
A i output actions
AX= (Nstates: E i

search Space Test Modeling
examples environment

NS

nnessfuncuon
f: XY R
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Approaches to learning FSMs

A Greedy heuristics
I problem-specific
A Reduction to SAT and CSP problems
| fast
I problem-specific
A Evolutionary algorithms (general)
I slow
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Proposed approach

A Based on Ant Colony Optimization (ACO)
A Non-standard problem reduction
A Modified ACO algorithm
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Solution representation

Transition table Output table
U Event o Event
State A T State A T
1 1 2 1 Z, Z,
2 2 1 2 Z, Z4
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N\

nNCanoni cal o way

A Reduce problem to finding a minimum cost
path in some complete graph

A Vertices T FSM transitions:
| <IN S/ JN S, eNE aN g
AEach ant adds transitions to its FSM

[ 1Y 1 [T/z4] } Lo { 1Y 2 [Alz)] }
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nNCanoni cal o AC

A Number of vertices in the construction
graph grows as (Nges)?l |E |cd

A No meaningful way to define heuristic
Information

ALater we show that c
iIneffective for FSM learning
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Proposed algorithm: MUACOsm

A Mutation-Based ACO for learning FSMs
A Uses a non-standard problem reduction
A Modified ACO
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Problem reduction: MUACOsm
V S . Ncanoni C

AACanonical o ACO

I Nodes are solution components
I Full solutions are built by ants

A Proposed MUACOsm algorithm
I Nodes are full solutions (FSMs)
I Ants travel between full solutions
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FSM Mutations

T/23
Change T/z A/z5 Change transition
transition action end state
A/22
T/23 T/23

Alz

T/z Az, T/z >
Alz, Alz,
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MUACOsm problem reduction

A Construction graph
I nodes are FSMs
| edges are mutations of FSMs

A Example

T:(1,P) -~ 2_ ,@

- -
- -

@ - A (3* R} = x1 @"’ T 1r]_.h R} =1
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Real search space graph

L i 3
. FA “ o
§ L
| b d N
L »
| ]
| . »
| | L] -
1 i »
Y = !thtwﬁb ._t.i.n.!.-.c.l.n.&ﬂ
| - R e
| S e ' - o &
-
T .
- * s ey

W

ACO for Learning FSMs

. 2 i
R e =] E S R
.Y
e
et e
s

L s
*
-

-

.




Part of real search space (1)
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Part of real search space (2)
ANY / '| ..__\ — %' — = _ - =
. / llll ﬁ | ' i H
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Heuristic information

oy = MaxX(Qin, (V) T 1(U))

\ /

Finite-state machines
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ACO algorithm

A, = random FSM

Improve A, with (1+1) -ES

Graph={ Ay}

while not stop() do
ConstructAntSolutions
UpdatePheromoneValues
DaemonActions

ACO for Learning FSMs
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Constructing ant solutions

A Use a colony of ants

A An ant is placed on a
graph node

A Each ant has a limited
number of steps

A On each step the ant
moves to the next node °

ACO for Learning FSMs 25



Ant step: selecting the next node

P=1
Mutation ‘
/

P Pnew \
\

N N Probabilistic
Go to best mutated \"™"%/ |selecton  raps

FSM Po =5 e
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Pheromone update

A Ant path quality = max fitness value on a path

A Upc
dep
A Upc

A_JI'

ate U™ i largest pheromone value
oyed on edge (u, V)

ate pheromone values:

Vi d

J,= @ Hy+9°
[O,ﬂ i pheromone evaporation rate
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Differences from previous work

A Added heuristic information
A Changed start node selection for ants
A Coupling with (1+1)-ES

A More experiments (later)
A More comparisons with other authors
A Harder problem

ACO for Learning FSMs
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NSI mpl eo probl e

A Toroidal field NI N
A M pieces of food
A s . time steps

A Fixed position of food
and the ant

A Goal 7 build an FSM,
such that the ant will eat
all food in K steps

Field example: John Muir Trall

ACO for Learning FSMs 29



Artificial Ant: Fithess function

Smax ~ Sast ~ 1
Snax

An. .47 number of eaten food pieces
As__ 1 max number of allotted steps
As... T number of used steps

1::nfood'l'

eaten food

used time steps
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ARSI mpl eo

A Two fields:

I Santa Fe Trall
I John Muir Trall

A Comparison:
i ACanoni cal o
I Christensen et al. (2007)
| Tsarev et al. (2007)
I Chellapilla et al. (1999)

ACO for Learning FSMs
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Santa Fe Trall
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nNCanoni cal o A

NCanon| M@BACOsSmM

ACO
State Success Success
count rate, % rate, %
5 18 87

10 10 91
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Santa Fe Trall (Christensen et
al., 600 steps)

-+—=MUACOsm --- Christensen et al

21000

= 19000

on coun

e = S e S =
P W O N
O O O o
© © O o
© O© o o

9000

Fitness evaluati

7000

5000

5 7 9 11 13 15
Number of FSM states
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John Muir Trall (Tsarev et al.,
2007): 200 steps

105 ——MUuACOsm ——Genetic algorithm
S 50
3 45
s 40 \
© 35
> \
s 30 \
g 25 \
@ 20 \
2 15 \
o 10
0o -~ * - ——— .
8 9 10 11 12 13 14 15 16

Number of FSM states

A MUACOsm is 30 times faster for ESMs with 7 states
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ANHarder o probl em:
Finite-State Machines (1)

H J'rzq M J'rzg H J'rzg M 1"2.._1_
A .
1. Alarm is DﬁQ 2. SE“!"Q
J alarm time
A
Hiz¢y Mz
T 1"25 T 1"25

A J"z;-

3. Alarm is on

U T [}Eg&!}H] J"E5, Z7
T [!Kq&!}ig] 1"25
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ANHarder o probl em:
Finite-State Machines (2)

Input data:

A Number of states C and sets E and o

A Set of test examples T

A T. =<input sequence ; output sequence O;>

NP-hard problem: build an EFSM with C
states compliant with tests T
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Learning EFSMs: Fitness

function

A Pass inputs to EFSM, record outputs
A Compare generated outputs with references

A Fitness = string similarity measure (edit
distance)

1 7 | EDO,, A,)
_m - B max(len(Oj),Zen(Aj))

j=1

1
=100- /" + — - (100 —
A A 00 (
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Experimental setup

. Generate random EFSM with C states
. Generate set of tests of total length CI 150

Learn EFSM

Experiment for each C repeated 100 times
Run until perfect fithess

Record mean number of fithess evaluations
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Learning random EFSMs

ACO for Learning FSMs
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