
MuACOsm ï A New Mutation-Based

Ant Colony Optimization Algorithm

for Learning Finite-State Machines

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics

St. Petersburg, Russia

Evolutionary and Combinatorial Optimization Track @ GECCO 2013

July 8, 2013

Motivation: Reliable software

ÅSystems with high cost of failure

ïEnergy industry

ïAircraft industry

ïSpace industry

ïé

ÅWe want to have reliable software

ïTesting is not enough

ïVerification is needed

ACO for Learning FSMs 2

Introduction (1)

ÅAutomated software engineering

ÅModel-driven development

ÅAutomata-based programming

Software

specification
Model Code

ACO for Learning FSMs 3

Introduction (2)

Software

specification
Model Code

Finite-state

machine

ACO for Learning FSMs 4

Finite-State Machine

ÅS ï set of states

Ås0 ɴS ï initial state

ÅɆ ï set of input events

Åȹ ï set of output actions

Åŭ: SĬɆŸS ï transition function

Åɚ: SĬɆŸȹ ï actions function

Example:

Åtwo states

Åevents = {A, T}

Åactions = {z1, z2, z3, z4}

2

A/z2

T/z1

1

A/z3

T/z3

ACO for Learning FSMs 5

Automated-controlled object

Finite-state

machine

Controlled

objectActions

Events

Automata-based programming

Design programs with

complex behavior as

automated-controlled

objects

e1

e2

z1

z3

Events
Output

actions

z2

z4

z2

ACO for Learning FSMs 6

Automata-based programming:

advantages
ÅModel before programming code, not vice

versa

ÅPossibility of program verification using

Model Checking

ÅYou can check temporal properties (LTL)

Model Code

Finite-state machine

ACO for Learning FSMs 7

Issues

ÅHard to build an FSM with desired

structure and behavior

ÅSeveral problems of learning FSMs were

proven to be NP-hard

ÅOne of the solutions ï metaheuristics

ACO for Learning FSMs 8

Software

specification

Test

examples

Modeling

environment

Fitness function

f: X Ÿ R

Learning finite-state machines with

metaheuristics

ÅNstates ï number of states

ÅɆ ï input events

Åȹ ï output actions

ÅX = (Nstates, Ɇ, ȹ) ï

 search space

ACO for Learning FSMs 9

Approaches to learning FSMs

ÅGreedy heuristics

ïproblem-specific

ÅReduction to SAT and CSP problems

ïfast

ïproblem-specific

ÅEvolutionary algorithms (general)

ïslow

 ACO for Learning FSMs 10

Proposed approach

ÅBased on Ant Colony Optimization (ACO)

ÅNon-standard problem reduction

ÅModified ACO algorithm

ACO for Learning FSMs 11

Solution representation

Transition table Output table

ŭ Event ɚ Event

State A T State A T

1 1 2 1 z1 z2

2 2 1 2 z2 z3

ACO for Learning FSMs 12

ñCanonicalò way to apply ACO

ÅReduce problem to finding a minimum cost
path in some complete graph

ÅVertices ï FSM transitions:

ï<i ɴS, j ɴS, e ɴɆ, a ɴȹ>

ÅEach ant adds transitions to its FSM

ACO for Learning FSMs

1Ÿ1 [T/z1] 1Ÿ2 [A/z2]

13

ñCanonicalò ACO: example

Å2 states

Å2 events

Å1 action

ACO for Learning FSMs 14

ñCanonicalò ACO: issues

ÅNumber of vertices in the construction

graph grows as (Nstates)
2Ĭ|Ɇ|Ĭ|ȹ|

ÅNo meaningful way to define heuristic

information

ÅLater we show that ñcanonicalò ACO is

ineffective for FSM learning

ACO for Learning FSMs 15

Proposed algorithm: MuACOsm

ÅMutation-Based ACO for learning FSMs

ÅUses a non-standard problem reduction

ÅModified ACO

ACO for Learning FSMs 16

Problem reduction: MuACOsm

vs. ñcanonicalò
ÅñCanonicalò ACO

ïNodes are solution components

ïFull solutions are built by ants

ÅProposed MuACOsm algorithm

ïNodes are full solutions (FSMs)

ïAnts travel between full solutions

ACO for Learning FSMs 17

FSM Mutations

2

A/z2

T/z1

1

A/z3

T/z3

2

A/z2

T/z1

1

A/z1

T/z3

2

A/z2

T/z1

1

A/z3

T/z3

Change

transition action

Change transition

end state

ACO for Learning FSMs 18

MuACOsm problem reduction

ÅConstruction graph

ïnodes are FSMs

ïedges are mutations of FSMs

ÅExample

ACO for Learning FSMs 19

Real search space graph

ACO for Learning FSMs 20

Part of real search space (1)

ACO for Learning FSMs 21

Part of real search space (2)

ACO for Learning FSMs 22

Heuristic information

u v
ɖuv = max(ɖmin, f(v) ï f(u))

Finite-state machines

ACO for Learning FSMs 23

ACO algorithm

A0 = random FSM

Improve A0 with (1+1) - ES

Graph = { A0}

while not stop() do

 ConstructAntSolutions

 UpdatePheromoneValues

 DaemonActions

ACO for Learning FSMs 24

Constructing ant solutions

ÅUse a colony of ants

ÅAn ant is placed on a

graph node

ÅEach ant has a limited

number of steps

ÅOn each step the ant

moves to the next node

ACO for Learning FSMs

A

A4

A3

A2

A1

25

Ant step: selecting the next node

Go to best mutated
FSM

Probabilistic
selection

P = Pnew

P = 1 ς Pnew

ä
Í

=

}4,3,2,1{ AAAAw

uwuw

uvuv

Av
p

ba

ba

ht

ht

A

f(A)=10

ɸ4

f(A4)=9

A3

f(A3)=0

A2

f(A2)=12

A1

f(A1)=8Mutation

A

A4

A3

A2

A1

ACO for Learning FSMs 26

Pheromone update

ÅAnt path quality = max fitness value on a path

ÅUpdate ï largest pheromone value

deployed on edge (u, v)

ÅUpdate pheromone values:

Å ï pheromone evaporation rate

best

uv
Ű

best

uvuvuv
Ű+Űɟ=Ű)1(-

[]0,1Íɟ

ACO for Learning FSMs 27

Differences from previous work

ÅAdded heuristic information

ÅChanged start node selection for ants

ÅCoupling with (1+1)-ES

ÅMore experiments (later)

ÅMore comparisons with other authors

ÅHarder problem

 ACO for Learning FSMs 28

ñSimpleò problem: Artificial Ant

ÅToroidal field NĬN

ÅM pieces of food

Åsmax time steps

ÅFixed position of food
and the ant

ÅGoal ï build an FSM,
such that the ant will eat
all food in K steps

Field example: John Muir Trail

ACO for Learning FSMs 29

Artificial Ant: Fitness function

max

lastmax
food

1

s

ss
nf

--
+=

Ånfood ï number of eaten food pieces

Åsmax ï max number of allotted steps

Åslast ï number of used steps

f

eaten food

used time steps

ACO for Learning FSMs 30

ñSimpleò problem: Artificial Ant

ÅTwo fields:

ïSanta Fe Trail

ïJohn Muir Trail

ÅComparison:

ïñCanonicalò ACO

ïChristensen et al. (2007)

ïTsarev et al. (2007)

ïChellapilla et al. (1999)

ACO for Learning FSMs

Santa Fe Trail

31

ñCanonicalò ACO

ñCanonicalò

ACO

MuACOsm

State

count

Success

rate, %

Success

rate, %

5 18 87

10 10 91

ACO for Learning FSMs 32

Santa Fe Trail (Christensen et

al., 600 steps)

5000

7000

9000

11000

13000

15000

17000

19000

21000

5 7 9 11 13 15

F
it

n
e
s
s
 e

v
a
lu

a
ti

o
n

 c
o

u
n

t

Number of FSM states

MuACOsm Christensen et al

ACO for Learning FSMs 33

John Muir Trail (Tsarev et al.,

2007): 200 steps

Å MuACOsm is 30 times faster for FSMs with 7 states

0

5

10

15

20

25

30

35

40

45

50

8 9 10 11 12 13 14 15 16

F
it

n
e
e
s
s
 e

v
a
lu

a
ti

o
n

 c
o

u
n

t

Ҏ106

Number of FSM states

MuACOsm Genetic algorithm

ACO for Learning FSMs 34

ñHarderò problem: learning Extended

Finite-State Machines (1)

ACO for Learning FSMs 35

Input data:

ÅNumber of states C and sets Ɇ and ȹ

ÅSet of test examples T

ÅTi =<input sequence Ij, output sequence Oj>

NP-hard problem: build an EFSM with C

states compliant with tests T

ñHarderò problem: learning Extended

Finite-State Machines (2)

ACO for Learning FSMs 36

Learning EFSMs: Fitness

function
ÅPass inputs to EFSM, record outputs

ÅCompare generated outputs with references

ÅFitness = string similarity measure (edit

distance)

ACO for Learning FSMs 37

Experimental setup

1. Generate random EFSM with C states

2. Generate set of tests of total length CĬ150

3. Learn EFSM

4. Experiment for each C repeated 100 times

5. Run until perfect fitness

6. Record mean number of fitness evaluations

ACO for Learning FSMs 38

Learning random EFSMs

ACO for Learning FSMs 39

