MUACOsm i A New Mutation-Based
Ant Colony Optimization Algorithm
for Learning Finite-State Machines

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics
St. Petersburg, Russia

Evolutionary and Combinatorial Optimization Track @ GECCO 2013
July 8, 2013

Motivation: Reliable software

A Systems with high cost of failure
I Energy industry
I Alircraft industry
I Space industry
G
A We want to have reliable software
| Testing Is not enough
I Verification is needed

ACO for Learning FSMs

Introduction (1)

A Automated software engineering
A Model-driven development
A Automata-based programming

[Softyvarg }@[Model }@[Code }
specification

ACO for Learning FSMs 3

Introduction (2)

Finite-state
machine

{Sof_t\./var.e }@{ Model }@{ Code }
specification

ACO for Learning FSMs 4

Finite-State Machine

A S set of states

A s,N ST initial state

A BT set of input events

A mi set of output actions

A G: STRY S transition function /21 Az
A & SI EY i actions function

Example:

A two states

A events = {A, T}

A actions = {z,, Z,, Z5, Z,} Az,
ACO for Learning FSMs 5

T/23

Automata-based programming

Output
Design programs with =™ actions
complex behavior as e
automated-controlled I R
. — €2 T === 23 P
objects i e e
Automated-controlled object
4 N N
Finite-state Events Controlled
machine Actions > object
_ / _ /

ACO for Learning FSMs

Automata-based programming:
advantages

A Model before programming code, not vice
versa

Finite-state machine

-
Model H Code }
N

A Possibility of program verification using
Model Checking

A You can check temporal properties (LTL)

ACO for Learning FSMs

|ssues

A Hard to build an FSM with desired
structure and behavior

A Several problems of learning FSMs were
proven to be NP-hard

A One of the solutions i metaheuristics

ACO for Learning FSMs

Learning finite-state machines with

metaheuristics
A N, I NUMber of states Software }
specification

A E 1 input events
A i output actions
AX= (Nstates: E i

search Space Test Modeling
examples environment

NS

nnessfuncuon
f: XY R

ACO for Learning FSMs

Approaches to learning FSMs

A Greedy heuristics
I problem-specific
A Reduction to SAT and CSP problems
| fast
I problem-specific
A Evolutionary algorithms (general)
I slow

ACO for Learning FSMs

10

Proposed approach

A Based on Ant Colony Optimization (ACO)
A Non-standard problem reduction
A Modified ACO algorithm

ACO for Learning FSMs

11

Solution representation

Transition table Output table
U Event o Event
State A T State A T
1 1 2 1 Z, Z,
2 2 1 2 Z, Z4

ACO for Learning FSMs 12

N\

nNCanoni cal o way

A Reduce problem to finding a minimum cost
path in some complete graph

A Vertices T FSM transitions:
| <IN S/ JN S, eNE aN g
AEach ant adds transitions to its FSM

[1Y 1 [T/z4] } Lo { 1Y 2 [Alz)] }

ACO for Learning FSMs 13

nNCanon.i

A2 states

%
)
-
)
>
D
N
o<

-
O
)

O
©
—
o<

14

ACO for Learning FSMs

nNCanoni cal o AC

A Number of vertices in the construction
graph grows as (Nges)?l |E |cd

A No meaningful way to define heuristic
Information

ALater we show that c
iIneffective for FSM learning

ACO for Learning FSMs 15

Proposed algorithm: MUACOsm

A Mutation-Based ACO for learning FSMs
A Uses a non-standard problem reduction
A Modified ACO

ACO for Learning FSMs 16

Problem reduction: MUACOsm
V S . Ncanoni C

AACanonical o ACO

I Nodes are solution components
I Full solutions are built by ants

A Proposed MUACOsm algorithm
I Nodes are full solutions (FSMs)
I Ants travel between full solutions

ACO for Learning FSMs 17

FSM Mutations

T/23
Change T/z A/z5 Change transition
transition action end state
A/22
T/23 T/23

Alz

T/z Az, T/z >
Alz, Alz,

ACO for Learning FSMs

18

MUACOsm problem reduction

A Construction graph
I nodes are FSMs
| edges are mutations of FSMs

A Example

T:(1,P) -~ 2_ ,@

- -
- -

@ - A (3* R} = x1 @"’ T 1r]_.h R} =1

ACO for Learning FSMs

19

Real search space graph

L i 3
. FA “ o
§ L
| b d N
L »
|]
| . »
| | L] -
1 i »
Y = !thtwﬁb ._t.i.n.!.-.c.l.n.&ﬂ
| - R e
| S e ' - o &
-
T .
- * s ey

W

ACO for Learning FSMs

. 2 i
R e =] E S R
.Y
e
et e
s

L s
*
-

-

.

Part of real search space (1)

o
el
e tr.l. 4
L
y N
._
[] /
e y L]
ety
Boae ey »
v s g W 1 u
0 " ..__..-
f i ¥
i o
[/ "
i .._..._ o &
I
B ¥
Do
4 [
| L]
I
.._ , 1 I.'.l. " t]
| o * »
4 * !
o
- |
4
A IRy —
. | (T ¥
L .
%] vd & 2
r ; ‘..
kn..u_“._. .n‘ | .‘i
g-. »
- []
" } = .
- B T A A
fo, I n .Fin.lii.‘.i T Ak A
| . :
- s o wnn g © i
i " oY » pii-=a e
P
! Fa
i »
E] fat - _m.._ -
i o [- 2
S T .FH. . .
B . i - A e’
L] W
- o WD - ;
- _ % v -
.a_r_, i .1#__ lti‘-.-..-.._._iq,_ ,_...__
1o
I_i.l_ e # L 2 ,“_. IEE
* - L R —— .!.-l.q.-...
L e A ~ 23
. &] (EEEE O H r—
L] w
w
uﬂi " ¥ tul,l_
5 fi
i
i ¥
o, ¥
.r.ul
il Eeepps “
e
.y _
I.I...I‘ <1 i - - Y e
L g
I .-.l!.i.l.!_ : i -y

21

ACO for Learning FSMs

Part of real search space (2)
ANY / '| ..__\ — %' — = _ - =
. / llll ﬁ | ' i H

ACO for Learning FSMs 22

Heuristic information

oy = MaxX(Qin, (V) T 1(U))

\ /

Finite-state machines

ACO for Learning FSMs 23

ACO algorithm

A, = random FSM

Improve A, with (1+1) -ES

Graph={ Ay}

while not stop() do
ConstructAntSolutions
UpdatePheromoneValues
DaemonActions

ACO for Learning FSMs

24

Constructing ant solutions

A Use a colony of ants

A An ant is placed on a
graph node

A Each ant has a limited
number of steps

A On each step the ant
moves to the next node °

ACO for Learning FSMs 25

Ant step: selecting the next node

P=1
Mutation ‘
/

P Pnew \
\

N N Probabilistic
Go to best mutated \"™"%/ |selecton raps

FSM Po =5 e

ACO for Learning FSMs wi { AL,A2,A3,A4}

26

Pheromone update

A Ant path quality = max fitness value on a path

A Upc
dep
A Upc

A_JI'

ate U™ i largest pheromone value
oyed on edge (u, V)

ate pheromone values:

Vi d

J,= @ Hy+9°
[O,ﬂ i pheromone evaporation rate

ACO for Learning FSMs 27

Differences from previous work

A Added heuristic information
A Changed start node selection for ants
A Coupling with (1+1)-ES

A More experiments (later)
A More comparisons with other authors
A Harder problem

ACO for Learning FSMs

28

NSI mpl eo probl e

A Toroidal field NI N
A M pieces of food
A s . time steps

A Fixed position of food
and the ant

A Goal 7 build an FSM,
such that the ant will eat
all food in K steps

Field example: John Muir Trall

ACO for Learning FSMs 29

Artificial Ant: Fithess function

Smax ~ Sast ~ 1
Snax

An. .47 number of eaten food pieces
As__ 1 max number of allotted steps
As... T number of used steps

1::nfood'l'

eaten food

used time steps

ACO for Learning FSMs 30

ARSI mpl eo

A Two fields:

I Santa Fe Trall
I John Muir Trall

A Comparison:
i ACanoni cal o
I Christensen et al. (2007)
| Tsarev et al. (2007)
I Chellapilla et al. (1999)

ACO for Learning FSMs

probl e

Santa Fe Trall

31

nNCanoni cal o A

NCanon| M@BACOsSmM

ACO
State Success Success
count rate, % rate, %
5 18 87

10 10 91

ACO for Learning FSMs 32

Santa Fe Trall (Christensen et
al., 600 steps)

-+—=MUACOsm --- Christensen et al

21000

= 19000

on coun

e = S e S =
P W O N
O O O o
© © O o
© O© o o

9000

Fitness evaluati

7000

5000

5 7 9 11 13 15
Number of FSM states
ACO for Learning FSMs 33

John Muir Trall (Tsarev et al.,
2007): 200 steps

105 ——MUuACOsm ——Genetic algorithm
S 50
3 45
s 40 \
© 35
> \
s 30 \
g 25 \
@ 20 \
2 15 \
o 10
0o -~ * - ——— .
8 9 10 11 12 13 14 15 16

Number of FSM states

A MUACOsm is 30 times faster for ESMs with 7 states

ACO for Learning FSMs 34

ANHarder o probl em:
Finite-State Machines (1)

H J'rzq M J'rzg H J'rzg M 1"2.._1_
A .
1. Alarm is DﬁQ 2. SE“!"Q
J alarm time
A
Hiz¢y Mz
T 1"25 T 1"25

A J"z;-

3. Alarm is on

U T [}Eg&!}H] J"E5, Z7
T [!Kq&!}ig] 1"25

ACO for Learning FSMs

T [K13:!ZI{2] J"E5, ZF

ANHarder o probl em:
Finite-State Machines (2)

Input data:

A Number of states C and sets E and o

A Set of test examples T

A T. =<input sequence ; output sequence O;>

NP-hard problem: build an EFSM with C
states compliant with tests T

ACO for Learning FSMs 36

Learning EFSMs: Fitness

function

A Pass inputs to EFSM, record outputs
A Compare generated outputs with references

A Fitness = string similarity measure (edit
distance)

1 7 | EDO,, A,)
_m - B max(len(Oj),Zen(Aj))

j=1

1
=100- /" + — - (100 —
A A 00 (

ACO for Learning FSMs 37

rrans)

o 0k wWhE

Experimental setup

. Generate random EFSM with C states
. Generate set of tests of total length CI 150

Learn EFSM

Experiment for each C repeated 100 times
Run until perfect fithess

Record mean number of fithess evaluations

ACO for Learning FSMs 38

Learning random EFSMs

ACO for Learning FSMs

39

